
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 // This is the theme of your application.
 //
 // Try running your application with "flutter run". You'll
see the
 // application has a blue toolbar. Then, without
quitting the app, try
 // changing the primarySwatch below to Colors.green
and then invoke
 // "hot reload" (press "r" in the console where you ran
"flutter run",
 // or simply save your changes to "hot reload" in a
Flutter IDE).
 // Notice that the counter didn't reset back to zero; the
application
 // is not restarted.
 primarySwatch: Colors.blue,
),
 home: MyHomePage(title: 'Flutter Demo Home Page'),
);

 }
}

class MyHomePage extends StatefulWidget {
 MyHomePage({Key key, this.title}) : super(key: key);

 // This widget is the home page of your application. It is
stateful, meaning
 // that it has a State object (defined below) that contains
fields that affect
 // how it looks.

 // This class is the configuration for the state. It holds the
values (in this
 // case the title) provided by the parent (in this case the
App widget) and
 // used by the build method of the State. Fields in a
Widget subclass are
 // always marked "final".

 final String title;

 @override
 _MyHomePageState createState() =>
_MyHomePageState();
}

class _MyHomePageState extends State<MyHomePage>
{
 @override

 Widget build(BuildContext context) {
 // This method is rerun every time setState is called, for
instance as done
 // by the _incrementCounter method above.
 //
 // The Flutter framework has been optimized to make
rerunning build methods
 // fast, so that you can just rebuild anything that needs
updating rather
 // than having to individually change instances of
widgets.
 return Scaffold(
 appBar: AppBar(
 // Here we take the value from the MyHomePage
object that was created by
 // the App.build method, and use it to set our appbar
title.
 title: Text(widget.title),
),
 body: Center(
 // Center is a layout widget. It takes a single child and
positions it
 // in the middle of the parent.
 child: Column(
 // Column is also a layout widget. It takes a list of
children and
 // arranges them vertically. By default, it sizes itself
to fit its
 // children horizontally, and tries to be as tall as its
parent.

 //
 // Invoke "debug painting" (press "p" in the console,
choose the
 // "Toggle Debug Paint" action from the Flutter
Inspector in Android
 // Studio, or the "Toggle Debug Paint" command in
Visual Studio Code)
 // to see the wireframe for each widget.
 //
 // Column has various properties to control how it
sizes itself and
 // how it positions its children. Here we use
mainAxisAlignment to
 // center the children vertically; the main axis here is
the vertical
 // axis because Columns are vertical (the cross axis
would be
 // horizontal).
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 TextField(),
 TextField(),
],
),
),
 floatingActionButton: FloatingActionButton(
 onPressed: () {},
 tooltip: 'Increment',
 child: Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer

for build methods.
);
 }
}

