Skip to content

flagos-ai/FlagRelease

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🌐 Language: English | 简体中文

FlagRelease

FlagRelease is a large-model automated migration, adaptation, and release platform developed by the Beijing Academy of Artificial Intelligence (BAAI) for multi-architecture artificial intelligence chips. The platform aims to enable mainstream large models to be migrated, validated, and released on diverse domestic AI hardware with lower cost and higher efficiency through automated, standardized, and intelligent adaptation workflows. Built upon the unified and open-source AI system software stack FlagOS, which provides cross-hardware adaptation capabilities, FlagRelease establishes a standardized pipeline that supports automatic migration of large models to different hardware architectures, automated evaluation of migration results, built-in automated deployment and tuning, and multi-chip model packaging and release. The artifacts released through the FlagRelease platform are published on ModelScope and Hugging Face under the FlagRelease organization, where users can obtain different hardware-specific versions of open-source large models. These models can be downloaded and used directly on the corresponding hardware environments without requiring users to perform model migration themselves, significantly reducing the migration cost for end users. Currently, the outputs of the FlagRelease platform include validated, hardware-adapted model files and integrated Docker images. Each image contains the core components of FlagOS along with all required model dependencies, allowing users to deploy and use the models directly on the target chips. In addition, each model release provides evaluation results as technical references, enabling users to clearly understand the model’s correctness and performance characteristics across different hardware platforms. Furthermore, every released model is accompanied by configuration and usage instructions for AnythingLLM, helping users quickly verify the availability of the migrated models and facilitating downstream development and application based on these models. The overall architecture of FlagOS is illustrated in the figure below:

Release Notes

Model Name 原始模型
DeepSeek-R1-Distill-Qwen-32B Huggingface: DeepSeek-R1-Distill-Qwen-32B-FlagOS-NVIDIA
Modalscope: DeepSeek-R1-Distill-Qwen-32B-FlagOS-NVIDIA
Huggingface: DeepSeek-R1-Distill-Qwen-32B-FlagOS-Cambricon
Modalscope: DeepSeek-R1-Distill-Qwen-32B-FlagOS-Cambricon
MiniMax-M1-80k Huggingface: MiniMax-M1-80k-FlagOS
Modalscope: MiniMax-M1-80k-FlagOS
Qwen2-7B-Instruct Huggingface: Qwen2-7B-Instruct-FlagOS
Modalscope: Qwen2-7B-Instruct-FlagOS
Qwen3-235B-A22B Huggingface: Qwen3-235B-A22B-FlagOS-nvidia
Modalscope: Qwen3-235B-A22B-FlagOS-nvidia
phi-4 Huggingface: phi-4-FlagOS
Modalscope: phi-4-FlagOS
Huggingface: phi-4-hygon-FlagOS
Modalscope: phi-4-hygon-FlagOS
Huggingface: phi-4-metax-FlagOS
Modalscope: phi-4-metax-FlagOS
Qwen2.5-32B-Instruct Huggingface: Qwen2.5-32B-Instruct-FlagOS-Nvidia
Modalscope: Qwen2.5-32B-Instruct-FlagOS-Nvidia
RoboBrain2.0-7B-W8A16 Huggingface: RoboBrain2.0-7B-W8A16-FlagOS
Modalscope: RoboBrain2.0-7B-W8A16-FlagOS
pi0 Huggingface: pi0-FlagOS
Modalscope: pi0-FlagOS
DeepSeek-R1-INT8 Huggingface: DeepSeek-R1-FlagOS-Iluvatar-INT8
Modalscope: DeepSeek-R1-FlagOS-Iluvatar-INT8
Huggingface: DeepSeek-R1-FlagOS-Kunlunxin-INT8
Modalscope: DeepSeek-R1-FlagOS-Kunlunxin-INT8
DeepSeek-R1-INT4 Huggingface: DeepSeek-R1-INT4-FlagOS-Iluvatar
Modalscope: DeepSeek-R1-INT4-FlagOS-Iluvatar
grok-2 Huggingface: grok-2-FlagOS
Modalscope: grok-2-FlagOS
RoboBrain-X0 Huggingface: RoboBrain-X0-FlagOS
Modalscope: RoboBrain-X0-FlagOS
MiniCPM-V-4 Huggingface: MiniCPM-V-4-FlagOS
Modalscope: MiniCPM-V-4-FlagOS
Huggingface: MiniCPM-V-4-metax-FlagOS
Modalscope: MiniCPM-V-4-metax-FlagOS
Qwen3-VL-235B-A22B-Instruct Huggingface: Qwen3-VL-235B-A22B-Instruct-FlagOS
Modalscope: Qwen3-VL-235B-A22B-Instruct-FlagOS
GLM-4.5 Huggingface: GLM-4.5-FlagOS
Modalscope: GLM-4.5-FlagOS
step3 Huggingface: step3-FlagOS
Modalscope: step3-FlagOS
RoboBrain2.0-7B Huggingface: RoboBrain2.0-7B-FlagOS
Modalscope: RoboBrain2.0-7B-FlagOS
Huggingface: RoboBrain2.0-7B-FlagOS-Ascend
Modalscope: RoboBrain2.0-7B-FlagOS-Ascend
Huggingface: RoboBrain2.0-7B-metax-FlagOS
Modalscope: RoboBrain2.0-7B-metax-FlagOS
Kimi-K2-Instruct Huggingface: Kimi-K2-Instruct-FlagOS
Modalscope: Kimi-K2-Instruct-FlagOS
Hunyuan-A13B-Instruct Huggingface: Hunyuan-A13B-Instruct-FlagOS
Modalscope: Hunyuan-A13B-Instruct-FlagOS
RoboBrain2.0-7B-FP8Dynamic Huggingface: RoboBrain2.0-7B-FP8Dynamic-FlagOS
Modalscope: RoboBrain2.0-7B-FP8Dynamic-FlagOS
RoboBrain-X0-Preview Huggingface: RoboBrain-X0-Preview-FlagOS
Modalscope: RoboBrain-X0-Preview-FlagOS
Huggingface: RoboBrain-X0-Preview-ascend-FlagOS
Modalscope: RoboBrain-X0-Preview-ascend-FlagOS
Kimi-K2-Thinking Huggingface: Kimi-K2-Thinking-FlagOS
Modalscope: Kimi-K2-Thinking-FlagOS
DeepSeek-R1-BF16 Huggingface: DeepSeek-R1-FlagOS-Nvidia-BF16
Modalscope: DeepSeek-R1-FlagOS-Nvidia-BF16
Huggingface: DeepSeek-R1-FlagOS-Metax-BF16
Modalscope: DeepSeek-R1-FlagOS-Metax-BF16
Huggingface: DeepSeek-R1-FlagOS-Cambricon-BF16
Modalscope: DeepSeek-R1-FlagOS-Cambricon-BF16
MiniMax-M2 Huggingface: MiniMax-M2-FlagOS
Modalscope: MiniMax-M2-FlagOS
Qwen3-Omni-30B-A3B-Instruct Huggingface: Qwen3-Omni-30B-A3B-Instruct-FlagOS
Modalscope: Qwen3-Omni-30B-A3B-Instruct-FlagOS
Qwen2-7B Huggingface: Qwen2-7B-FlagOS-Arm
Modalscope: Qwen2-7B-FlagOS-Arm
QwQ-32B Huggingface: QwQ-32B-FlagOS-Cambricon
Modalscope: QwQ-32B-FlagOS-Cambricon
Huggingface: QwQ-32B-FlagOS-Nvidia
Modalscope: QwQ-32B-FlagOS-Nvidia
Huggingface: QwQ-32B-FlagOS-Iluvatar
Modalscope: QwQ-32B-FlagOS-Iluvatar
Qwen3-Next-80B-A3B-Instruct Huggingface: Qwen3-Next-80B-A3B-Instruct-FlagOS
Modalscope: Qwen3-Next-80B-A3B-Instruct-FlagOS
Huggingface: Qwen3-Next-80B-A3B-Instruct-metax-FlagOS
Modalscope: Qwen3-Next-80B-A3B-Instruct-metax-FlagOS
Qwen3-32B Huggingface: Qwen3-32B-FlagOS
Modalscope: Qwen3-32B-FlagOS
Huggingface: Qwen3-32B-ascend-FlagOS
Modalscope: Qwen3-32B-ascend-FlagOS
Qwen3-8B Huggingface: Qwen3-8B-metax-FlagOS
Modalscope: Qwen3-8B-metax-FlagOS
Huggingface: Qwen3-8B-FlagOS
Modalscope: Qwen3-8B-FlagOS
Huggingface: Qwen3-8B-mthreads-FlagOS
Modalscope: Qwen3-8B-mthreads-FlagOS
Emu3.5 Huggingface: Emu3.5-FlagOS
Modalscope: Emu3.5-FlagOS
MiniCPM_o_2.6 Huggingface: MiniCPM_o_2.6-FlagOS-Cambricon
Modalscope: MiniCPM_o_2.6-FlagOS-Cambricon
Huggingface: MiniCPM_o_2.6-FlagOS-NVIDIA
Modalscope: MiniCPM_o_2.6-FlagOS-NVIDIA
DeepSeek-V3.2-Exp Huggingface: DeepSeek-V3.2-Exp-FlagOS
Modalscope: DeepSeek-V3.2-Exp-FlagOS
Qwen2.5-VL-32B-Instruct-BF16 Huggingface: Qwen2.5-VL-32B-Instruct-FlagOS-Metax-BF16
Modalscope: Qwen2.5-VL-32B-Instruct-FlagOS-Metax-BF16
Qwen2.5-VL-32B-Instruct Huggingface: Qwen2.5-VL-32B-Instruct-FlagOS-Nvidia
Modalscope: Qwen2.5-VL-32B-Instruct-FlagOS-Nvidia
RoboBrain2.5-8B Huggingface: RoboBrain2.5-8B-FlagOS
Modalscope: RoboBrain2.5-8B-FlagOS
Huggingface: RoboBrain2.5-8B-ascend-FlagOS
Modalscope: RoboBrain2.5-8B-ascend-FlagOS
gpt-oss-120b Huggingface: gpt-oss-120b-FlagOS
Modalscope: gpt-oss-120b-FlagOS
Qwen3-4B Huggingface: Qwen3-4B-FlagOS-cambricon
Modalscope: Qwen3-4B-FlagOS-cambricon
Huggingface: Qwen3-4B-FlagOS-Nvidia
Modalscope: Qwen3-4B-FlagOS-Nvidia
Huggingface: Qwen3-4B-FlagOS-Iluvatar
Modalscope: Qwen3-4B-FlagOS-Iluvatar
Huggingface: Qwen3-4B-FlagOS-Metax
Modalscope: Qwen3-4B-FlagOS-Metax
Huggingface: Qwen3-4B-FlagOS-Ascend
Modalscope: Qwen3-4B-FlagOS-Ascend
Huggingface: Qwen3-4B-hygon-FlagOS
Modalscope: Qwen3-4B-hygon-FlagOS
Qwen3-30B-A3B Huggingface: Qwen3-30B-A3B-FlagOS-nvidia
Modalscope: Qwen3-30B-A3B-FlagOS-nvidia
Huggingface: Qwen3-30B-A3B-Iluvatar-FlagOS
Modalscope: Qwen3-30B-A3B-Iluvatar-FlagOS
RoboBrain2.0-32B Huggingface: RoboBrain2.0-32B-FlagOS
Modalscope: RoboBrain2.0-32B-FlagOS
Huggingface: RoboBrain2.0-32B-Ascend-FlagOS
Modalscope: RoboBrain2.0-32B-Ascend-FlagOS
Qwen3-235B-A22B-Instruct-2507 Huggingface: Qwen3-235B-A22B-Instruct-2507-FlagOS
Modalscope: Qwen3-235B-A22B-Instruct-2507-FlagOS
Huggingface: Qwen3-235B-A22B-Instruct-2507-hygon-FlagOS
Modalscope: Qwen3-235B-A22B-Instruct-2507-hygon-FlagOS
Seed-OSS-36B-Instruct Huggingface: Seed-OSS-36B-Instruct-FlagOS
Modalscope: Seed-OSS-36B-Instruct-FlagOS
ERNIE-4.5-300B-A47B-PT Huggingface: ERNIE-4.5-300B-A47B-PT-FlagOS
Modalscope: ERNIE-4.5-300B-A47B-PT-FlagOS

Example Usage of Released Artifacts

The outputs of FlagRelease include validated large-model files and integrated FlagOS Docker images. By using these artifacts, users can rapidly deploy and run large models on different hardware platforms without performing model migration themselves or configuring complex software environments. Example Workflow

  1. Download Open-Source Model Weights
  • Visit the FlagRelease pages on ModelScope or Hugging Face, select the required large model and the corresponding hardware-specific version, and download the model weight files directly.
  1. Download the FlagOS Image
  • Obtain the officially provided integrated FlagOS Docker image, which includes the unified software stack and built-in hardware adaptation support.
  1. Deployment and Execution
  • Combine the downloaded model weights with the FlagOS image to run the model directly on the target hardware.
  • FlagOS automatically manages hardware resources and supports multi-chip parallel execution, eliminating the need for manual environment configuration. Example Application Scenarios
  • Research and experimentation: rapidly deploy large models for inference without concern for underlying hardware differences.
  • Production environments: directly deploy hardware-specific versions of models as services, ensuring performance and stability across different AI chips.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •