Skip to content

GroupResult has minimum result latency of 500ms #5930

@allanlei

Description

@allanlei

Checklist

  • I have verified that the issue exists against the master branch of Celery. 90fe53f

  • This has already been asked to the discussion group first.

  • I have read the relevant section in the
    contribution guide
    on reporting bugs.

  • I have checked the issues list
    for similar or identical bug reports.

  • I have checked the pull requests list
    for existing proposed fixes.

  • I have checked the commit log
    to find out if the bug was already fixed in the master branch.

  • I have included all related issues and possible duplicate issues
    in this issue (If there are none, check this box anyway).

Mandatory Debugging Information

  • I have included the output of celery -A proj report in the issue.
    (if you are not able to do this, then at least specify the Celery
    version affected).
  • I have verified that the issue exists against the master branch of Celery.
  • I have included the contents of pip freeze in the issue.
  • I have included all the versions of all the external dependencies required
    to reproduce this bug.

Optional Debugging Information

  • I have tried reproducing the issue on more than one Python version
    and/or implementation.
  • I have tried reproducing the issue on more than one message broker and/or
    result backend.
  • I have tried reproducing the issue on more than one version of the message
    broker and/or result backend.
  • I have tried reproducing the issue on more than one operating system.
  • I have tried reproducing the issue on more than one workers pool.
  • I have tried reproducing the issue with autoscaling, retries,
    ETA/Countdown & rate limits disabled.
  • I have tried reproducing the issue after downgrading
    and/or upgrading Celery and its dependencies.

Related Issues and Possible Duplicates

Related Issues

  • None

Possible Duplicates

  • None

Environment & Settings

Celery version:

celery report Output:

software -> celery:4.4.0 (cliffs) kombu:4.6.7 py:3.7.6
            billiard:3.6.1.0 redis:3.3.11
platform -> system:Linux arch:64bit
            kernel version:5.4.13-3-MANJARO imp:CPython
loader   -> celery.loaders.app.AppLoader
settings -> transport:redis results:redis://redis:6379/2

Steps to Reproduce

Required Dependencies

  • Minimal Python Version: N/A or Unknown
  • Minimal Celery Version: N/A or Unknown
  • Minimal Kombu Version: N/A or Unknown
  • Minimal Broker Version: N/A or Unknown
  • Minimal Result Backend Version: N/A or Unknown
  • Minimal OS and/or Kernel Version: N/A or Unknown
  • Minimal Broker Client Version: N/A or Unknown
  • Minimal Result Backend Client Version: N/A or Unknown

Python Packages

pip freeze Output:

amqp==2.5.2
apipkg==1.5
attrs==19.3.0
backcall==0.1.0
billiard==3.6.1.0
blinker==1.4
boltons==19.3.0
cachetools==4.0.0
celery==4.4.0
certifi==2019.11.28
cffi==1.13.2
chardet==3.0.4
Click==7.0
cryptography==2.8
decorator==4.4.1
defusedxml==0.6.0
dnspython==1.16.0
dotted==0.1.8
elasticsearch==7.1.0
elasticsearch-dsl==7.1.0
execnet==1.7.1
Flask==1.1.1
Flask-Caching==1.4.0
Flask-Cors==3.0.8
Flask-Limiter==1.1.0
Flask-Login==0.4.1
flask-mongoengine==0.9.5
flask-shell-ipython==0.4.1
Flask-WTF==0.14.2
gevent==1.4.0
google-api-core==1.15.0
google-auth==1.10.0
google-cloud-core==1.1.0
google-cloud-pubsub==1.1.0
google-cloud-storage==1.23.0
google-resumable-media==0.5.0
googleapis-common-protos==1.6.0
greenlet==0.4.15
grpc-google-iam-v1==0.12.3
grpcio==1.26.0
httpagentparser==1.9.0
httplib2==0.15.0
idna==2.8
importlib-metadata==1.4.0
ipython==7.10.2
ipython-genutils==0.2.0
itsdangerous==1.1.0
jedi==0.15.2
Jinja2==2.10.3
kombu==4.6.7
libthumbor==1.3.2
limits==1.3
MarkupSafe==1.1.1
marshmallow==3.3.0
mixpanel==4.5.0
mmh3==2.5.1
mongoengine==0.18.2
more-itertools==8.1.0
multidict==4.7.4
ndg-httpsclient==0.5.1
newrelic==5.4.1.134
nexmo==2.4.0
oauth2client==4.1.3
oauthlib==3.1.0
packaging==20.0
parso==0.5.2
pexpect==4.7.0
phonenumbers==8.11.1
pickleshare==0.7.5
Pillow-SIMD==6.0.0.post0
pluggy==0.13.1
prompt-toolkit==3.0.2
protobuf==3.9.0
ptyprocess==0.6.0
pusher==2.1.4
py==1.8.1
py-cpuinfo==5.0.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
pybase62==0.4.3
pycparser==2.19
Pygments==2.5.2
PyJWT==1.7.1
pymongo==3.10.0
PyNaCl==1.3.0
pyOpenSSL==19.1.0
pyparsing==2.4.6
pytelegraf==0.3.3
pytest==5.3.2
pytest-benchmark==3.2.3
pytest-forked==1.1.3
pytest-mock==1.13.0
pytest-sugar==0.9.2
pytest-xdist==1.31.0
python-dateutil==2.8.1
python-rapidjson==0.9.1
python3-openid==3.1.0
pytz==2019.3
PyYAML==5.2
redis==3.3.11
requests==2.22.0
requests-oauthlib==1.3.0
rsa==4.0
semantic-version==2.8.3
sentry-sdk==0.13.5
six==1.13.0
social-auth-app-flask==1.0.0
social-auth-core==3.2.0
social-auth-storage-mongoengine==1.0.1
termcolor==1.1.0
traitlets==4.3.3
twilio==6.35.1
urllib3==1.25.7
uWSGI==2.0.18
vine==1.3.0
wcwidth==0.1.8
webargs==5.5.2
Werkzeug==0.15.5
WTForms==2.2.1
yarl==1.4.2
zipp==0.6.0

Other Dependencies

Details

N/A

Minimally Reproducible Test Case

Details

import time
from flask import Flask
from celery import Celery, group


app = Flask(__name__)
celery = Celery('app', broker='redis://redis:6379/1', backend='redis://redis:6379/2')


@celery.task
def debug():
    return


@app.route('/', methods={'GET', 'POST'})
def hello_world():
    task = group([
        debug.si() for i in range(10)
    ]).apply_async()

    start = time.perf_counter()
    task.get(timeout=5, interval=0.01)
    print('END', (time.perf_counter() - start) * 1000)
    return {}

Expected Behavior

Scheduling noop tasks and setting interval should make the response time near the set interval in ideal clean environments.

Example: Setting task.get(interval=0.1) with 5x noop tasks, I would expect near 100ms response.

Actual Behavior

Regardless of the setting of interval, the response time is at least 500ms.

The cause is that interval is not passed all the way to get_many() where it defaults to 500ms which is where the minimum latency is comming from.

celery/celery/result.py

Lines 837 to 840 in cf82930

def _iter_meta(self):
return (meta for _, meta in self.backend.get_many(
{r.id for r in self.results}, max_iterations=1,
))

def get_many(self, task_ids, timeout=None, interval=0.5, no_ack=True,
on_message=None, on_interval=None, max_iterations=None,
READY_STATES=states.READY_STATES):
interval = 0.5 if interval is None else interval

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions