Augmenting Visualizations with Interactive Data Facts to Facilitate Interpretation and Communication
Run a web server:
python -m http.server 8000Go to http://localhost:8000/ to run the system (preloaded with the cars dataset).
-
Add your dataset in a csv format in the folders
dataGenerator/csvsanddataFiles/csvs(already has sample datasets) -
Create a json file specifying the metadata of your dataset in
dataGenerator/dataTypeMaps(already has files for sample datasets). Make sure you specify the "type" field for each attribute and the "isItemAttr" field for the label attribute (e.g. Car Name). -
To generate the data facts and mappings between facts, visualizations, and annotations, within the
dataGeneratorfolder, executepython mainDataFileGenerator.py csvs/fileName.csv dataTypeMaps/fileName.json. This will create two json files under thedataFilesfoder (filename-mainDataMap.jsonwith all the facts and visualizations, andfileName-metadataMap.jsonwhich is a modified version of the dataTypeMap file passed earlier). -
In
js/src/main.js, update the paths to the data files passed to the variablesdataFileToUse,mainDataMapFileUrl, andmetadataMapFileUrlto point to the required csv file and the files generated in Step 4. -
Go to the root folder, and run a local server (
python -m http.server 8000) and go to http://localhost:8000/
@article{srinivasan2019augmenting,
author={Srinivasan, Arjun and Drucker, Steven M. and Endert, Alex and Stasko, John},
journal={IEEE Transactions on Visualization and Computer Graphics},
title={Augmenting Visualizations with Interactive Data Facts to Facilitate Interpretation and Communication},
year={2019},
volume={25},
number={1},
pages={672-681},
keywords={Data visualization;Tools;Visualization;Natural languages;Data mining;Histograms;Complexity theory;Natural Language Generation;Mixed-initiative Interaction;Visualization Recommendation;Data-driven Communication},
doi={10.1109/TVCG.2018.2865145}
}