Skip to content

VLN-Zero/vln-zero.github.io

Repository files navigation

VLN-Zero

Rapid Exploration and Cache-Enabled Neurosymbolic Vision-Language Planning for Zero-Shot Transfer in Robot Navigation

Framework Overview

Installation

  1. Clone this repo
cd VLN-Zero
  1. Make changes to the habitat-lab code

In habitat-lab/habitat/utils/visualizations/maps.py, change lines 425-426 to the following:

    limit = topdown_map_info["limits"]
    # Crop the map to show only the agent and goal +- some buffer
    top_down_map = top_down_map[limit[0]:limit[1], limit[2]:limit[3]]

Also, in habitat-lab/habitat_baselines/rl/requirements.txt, remove lines 3-4 (the tensorflow==1.13.1 requirement is not needed).

  1. Follow the VLN-CE installation guide.

Install both Habitat-Lab and VLN-CE following the setup steps provided here.

  1. Download data

Following the steps from the VLN-CE project, download the MP3D, R2R, and RxR datasets. The final structure should look like something like this.

VLN-Zero
├─ habitat-lab
├─ VLN_CE
│  ├─ data
│  │  ├─ datasets
│  │  │  ├─ R2R_VLNCE_v1-3
│  │  │  │  ├─ test
│  │  │  │  ├─ train
│  │  │  │  ├─ val_seen
│  │  │  │  ├─ val_unseen
│  │  │  ├─ R2R_VLNCE_v1-3_preprocessed
│  │  │  │  ├─ envdrop
│  │  │  │  ├─ joint_train_envdrop
│  │  │  │  ├─ test
│  │  │  │  ├─ train
│  │  │  │  ├─ val_seen
│  │  │  │  ├─ val_unseen
│  │  │  ├─ RxR_VLNCE_v0
│  │  │  │  ├─ train
│  │  │  │  ├─ val_seen
│  │  │  │  ├─ val_unseen
│  │  │  │  ├─ test_challenge
│  │  │  │  ├─ text_features
│  │  ├─ ddppo-models
│  │  ├─ res
│  │  ├─ scene_datasets
│  │  │  ├─ mp3d

Evaluation

To run our implementation, run bash eval_zero_vlnce.sh. The number of gpus used can me modified in this script. Make sure to set the OPENAI_API_KEY variable to your key (Warning! With multiple gpus in use, this script will use a LOT of API calls).

Results can be tracked by running python analyze_results.py --path YOUR_PATH

The evaluation can be killed by running bash kill_zero_eval.sh

These scripts were taken from NaVid-VLN-CE.

Citation

Please cite with

@misc{anonymous2025vlnzerorapidexplorationcacheenabled,
      title={VLN-Zero: Rapid Exploration and Cache-Enabled Neurosymbolic Vision-Language Planning for Zero-Shot Transfer in Robot Navigation}, 
      author={Anonymous},
      year={2025},
      url={https://vln-zero.github.io/},
}

About

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published