Rapid Exploration and Cache-Enabled Neurosymbolic Vision-Language Planning for Zero-Shot Transfer in Robot Navigation
- Clone this repo
cd VLN-Zero- Make changes to the
habitat-labcode
In habitat-lab/habitat/utils/visualizations/maps.py, change lines 425-426 to the following:
limit = topdown_map_info["limits"]
# Crop the map to show only the agent and goal +- some buffer
top_down_map = top_down_map[limit[0]:limit[1], limit[2]:limit[3]]Also, in habitat-lab/habitat_baselines/rl/requirements.txt, remove lines 3-4 (the tensorflow==1.13.1 requirement is not needed).
- Follow the VLN-CE installation guide.
Install both Habitat-Lab and VLN-CE following the setup steps provided here.
- Download data
Following the steps from the VLN-CE project, download the MP3D, R2R, and RxR datasets. The final structure should look like something like this.
VLN-Zero
├─ habitat-lab
├─ VLN_CE
│ ├─ data
│ │ ├─ datasets
│ │ │ ├─ R2R_VLNCE_v1-3
│ │ │ │ ├─ test
│ │ │ │ ├─ train
│ │ │ │ ├─ val_seen
│ │ │ │ ├─ val_unseen
│ │ │ ├─ R2R_VLNCE_v1-3_preprocessed
│ │ │ │ ├─ envdrop
│ │ │ │ ├─ joint_train_envdrop
│ │ │ │ ├─ test
│ │ │ │ ├─ train
│ │ │ │ ├─ val_seen
│ │ │ │ ├─ val_unseen
│ │ │ ├─ RxR_VLNCE_v0
│ │ │ │ ├─ train
│ │ │ │ ├─ val_seen
│ │ │ │ ├─ val_unseen
│ │ │ │ ├─ test_challenge
│ │ │ │ ├─ text_features
│ │ ├─ ddppo-models
│ │ ├─ res
│ │ ├─ scene_datasets
│ │ │ ├─ mp3d
To run our implementation, run bash eval_zero_vlnce.sh. The number of gpus used can me modified in this script. Make sure to set the OPENAI_API_KEY variable to your key (Warning! With multiple gpus in use, this script will use a LOT of API calls).
Results can be tracked by running python analyze_results.py --path YOUR_PATH
The evaluation can be killed by running bash kill_zero_eval.sh
These scripts were taken from NaVid-VLN-CE.
Please cite with
@misc{anonymous2025vlnzerorapidexplorationcacheenabled,
title={VLN-Zero: Rapid Exploration and Cache-Enabled Neurosymbolic Vision-Language Planning for Zero-Shot Transfer in Robot Navigation},
author={Anonymous},
year={2025},
url={https://vln-zero.github.io/},
}
