Skip to content

SREGym/SREGym

Repository files navigation

SREGym: A Benchmarking Platform for SRE Agents

🔍Overview | 📦Installation | 🚀Quick Start | ⚙️Usage | 🤝Contributing | 📖Docs | Slack

🔍 Overview

SREGym is an AI-native platform to enable the design, development, and evaluation of AI agents for Site Reliability Engineering (SRE). The core idea is to create live system environments for SRE agents to solve real-world SRE problems. SREGym provides a comprehensive SRE benchmark suite with a wide variety of problems for evaluating SRE agents and also for training next-generation AI agents.

SREGym Overview

SREGym is inspired by our prior work on AIOpsLab and ITBench. It is architectured with AI-native usability and extensibility as first-class principles. The SREGym benchmark suites contain 86 different SRE problems. It supports all the problems from AIOpsLab and ITBench, and includes new problems such as OS-level faults, metastable failures, and concurrent failures. See our problem set for a complete list of problems.

📦 Installation

Requirements

Recommendations

git clone --recurse-submodules https://github.com/SREGym/SREGym
cd SREGym
uv sync
uv run pre-commit install

🚀 Quickstart

Setup your cluster

Choose either a) or b) to set up your cluster and then proceed to the next steps.

a) Kubernetes Cluster (Recommended)

SREGym supports any kubernetes cluster that your kubectl context is set to, whether it's a cluster from a cloud provider or one you build yourself.

We have an Ansible playbook to setup clusters on providers like CloudLab and our own machines. Follow this README to set up your own cluster.

b) Emulated cluster

SREGym can be run on an emulated cluster using kind on your local machine. However, not all problems are supported.

# For x86 machines
kind create cluster --config kind/kind-config-x86.yaml

# For ARM machines
kind create cluster --config kind/kind-config-arm.yaml

⚙️ Usage

Running an Agent

Quick Start

To get started with the included Stratus agent:

  1. Create your .env file:
mv .env.example .env
  1. Open the .env file and configure your model and API key.

  2. Run the benchmark:

python main.py --agent <agent-name> --model <model-id>

For example, to run the Stratus agent:

python main.py --agent stratus --model gpt-4o

Model Selection

SREGym supports multiple LLM providers. Specify your model using the --model flag:

python main.py --agent <agent-name> --model <model-id>

Available Models

Model ID Provider Model Name Required Environment Variables
gpt-4o OpenAI GPT-4o OPENAI_API_KEY
gemini-2.5-pro Google Gemini 2.5 Pro GEMINI_API_KEY
claude-sonnet-4 Anthropic Claude Sonnet 4 ANTHROPIC_API_KEY
bedrock-claude-sonnet-4.5 AWS Bedrock Claude Sonnet 4.5 AWS_PROFILE, AWS_DEFAULT_REGION
moonshot Moonshot Moonshot MOONSHOT_API_KEY
watsonx-llama IBM watsonx Llama 3.3 70B WATSONX_API_KEY, WX_PROJECT_ID
glm-4 GLM GLM-4 GLM_API_KEY
azure-openai-gpt-4o Azure OpenAI GPT-4o AZURE_API_KEY, AZURE_API_BASE

Default: If no model is specified, gpt-4o is used by default.

Examples

OpenAI:

# In .env file
OPENAI_API_KEY="sk-proj-..."

# Run with GPT-4o
python main.py --agent stratus --model gpt-4o

Anthropic:

# In .env file
ANTHROPIC_API_KEY="sk-ant-api03-..."

# Run with Claude Sonnet 4
python main.py --agent stratus --model claude-sonnet-4

AWS Bedrock:

# In .env file
AWS_PROFILE="bedrock"
AWS_DEFAULT_REGION=us-east-2

# Run with Claude Sonnet 4.5 on Bedrock
python main.py --agent stratus --model bedrock-claude-sonnet-4.5

Note: For AWS Bedrock, ensure your AWS credentials are configured via ~/.aws/credentials and your profile has permissions to access Bedrock.

Acknowledgements

This project is generously supported by a Slingshot grant from the Laude Institute.

License

Licensed under the MIT license.

About

An AI-Native Platform for Benchmarking SRE Agents

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 22