m3-teaser.mp4
- Installation
- Demo
- Dataset
- Checkpoint
- Training
- Inference
- Prepare Conda Environment
conda create --name gs python=3.10
conda activate gs
conda install -c conda-forge cudatoolkit=11.7
conda install -c nvidia/label/cuda-11.7.0 cuda-toolkit
pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.2+cu117 -f https://download.pytorch.org/whl/torch_stable.html
conda install -c conda-forge gxx_linux-64=11.2.0
conda install -c conda-forge libxcrypt
pip install plyfile tqdm psutil setuptools mkl pandas
pip install --force-reinstall numpy==1.23.5
export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH- Download M3 and install submodules
git clone https://github.com/MaureenZOU/m3-spatial.git
cd submodules/diff-gaussian-rasterization && pip install -e .
cd submodules/diff-gaussian-rasterization2 && pip install -e .- Download Grendel-GS in a separate folder and install submodules
git clone git@github.com:nyu-systems/Grendel-GS.git --recursive
cd submodules/gsplat && pip install -e .
cd submodules/simple-knn && pip install -e .sh run/app.shdemo_video.mp4
- Download data for raw image
- https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/datasets/input/tandt_db.zip
- http://storage.googleapis.com/gresearch/refraw360/360_v2.zip
-
Download data for embedding | Train | |-------| | Link |
-
Feature Extraction
python3 -m lmm.clip.extract # CLIP feature
python3 -m lmm.siglip.extract # SigLIP feature
python3 -m lmm.dinov2.extract # DINOv2 feature
python3 -m lmm.llama.extract # LLaMA3 feature
python3 -m lmm.llamav.extract # LLaMAv feature
python3 -m lmm.seem.extract # SEEM feature- We prepare trained M3 representation for two scenes train and geisel.
| Name | size | link |
|---|---|---|
| train | 2.04GB | https://huggingface.co/xueyanz/M3-Train/resolve/main/train_ckpt.tar.gz |
| geisel | 1.04GB | https://huggingface.co/xueyanz/M3-Train/resolve/main/geisel_ckpt.tar.gz |
sh run/train.sh # single GPU
sh run/mtrain.sh # multi GPUsh run/eval.sh # single GPU evaluation
sh run/app.sh # run interactive demo