Skip to content

Code for "Ambiguity-Induced Contrastive Learning for Instance-Dependent Partial Label Learning" in IJCAI-ECAI 2022.

Notifications You must be signed in to change notification settings

eddiexia98/ABLE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

Ambiguity-Induced Contrastive Learning for Instance-Dependent Partial Label Learning

Code for "Ambiguity-Induced Contrastive Learning for Instance-Dependent Partial Label Learning" in IJCAI-ECAI 2022.

Getting started

  • Create directory ./data (if ./data does not exist)
  • Create directory ./pmodel (if ./pmodel does not exist)
  • Change directory to ./pmodel
  • Download pmodel

Running

python -u main.py --dataset cifar10 --data-dir './data' --workers 0 --num-class 10 --pmodel_path './pmodel/cifar10.pt' --arch resnet18 --temperature 0.1 --loss_weight 1.0 --cuda_VISIBLE_DEVICES '0' --epochs 500 --batch-size 64 --lr 0.01 --wd 1e-3 --cosine --seed 123

python -u main.py --dataset mnist --data-dir './data' --workers 0 --num-class 10 --pmodel_path './pmodel/mnist.pt' --arch resnet18 --temperature 0.1 --loss_weight 1.0 --cuda_VISIBLE_DEVICES '0' --epochs 500 --batch-size 64 --lr 0.01 --wd 1e-3 --cosine --seed 123

python -u main.py --dataset fmnist --data-dir './data' --workers 0 --num-class 10 --pmodel_path './pmodel/fmnist.pt' --arch resnet18 --temperature 0.1 --loss_weight 1.0 --cuda_VISIBLE_DEVICES '0' --epochs 500 --batch-size 64 --lr 0.01 --wd 1e-3 --cosine --seed 123

python -u main.py --dataset kmnist --data-dir './data' --workers 0 --num-class 10 --pmodel_path './pmodel/kmnist.pt' --arch resnet18 --temperature 0.1 --loss_weight 1.0 --cuda_VISIBLE_DEVICES '0' --epochs 500 --batch-size 64 --lr 0.01 --wd 1e-3 --cosine --seed 123

Acknowledgment

J. Lv, M. Xu, L. Feng, G. Niu, X. Geng, and M. Sugiyama. Progressive identification of true labels for partial-label learning. In International Conference on Machine Learning, pages 6500–6510, Virtual Event, July 2020. ACM.

Ning Xu, Congyu Qiao, Xin Geng, and Min-Ling Zhang. Instance-dependent partial label learning. In Advances in Neural Information Processing Systems, Virtual Event, December 2021. MIT Press.

Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and Junbo Zhao. PiCO: Contrastive label disambiguation for partial label learning. In International Conference on Learning Representations, 2022.

About

Code for "Ambiguity-Induced Contrastive Learning for Instance-Dependent Partial Label Learning" in IJCAI-ECAI 2022.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages