Skip to content
/ DiffAlign Public template

The official implementation of 'Equivariant Denoisers Cannot Copy Graphs: Aligned your Graph Diffusion Models' (ICLR2025)

Notifications You must be signed in to change notification settings

Aalto-QuML/DiffAlign

Repository files navigation

This the official implementation of the DiffAlign model as seen in Equivariant Denoisers Cannot Copy Graphs: Align Your Graph Diffusion Models

Obtaining processed data and checkpoints

The processed data can be downloaded from this link. The checkpoint for our best model (aligned with absorbing transition) can be found here.

Training the model

To train our best model, run the following command:

python3 scripts/train.py +experiment=align_absorbing

Generating samples

Run the following script to generate samples similar to the ones used in the results (Table ...). ´your_experiment_name´ is the name of the experiment where you want to save the samples. Alternatively, you can obtain the exact samples used in the paper in this link.

python3 src/sample_array_job.py
		 +experiment=7ck
		 general.wandb.mode=offline
		 general.wandb.run_id=7ckmnkvc
		 diffusion.edge_conditional_set=test
		 general.wandb.checkpoint_epochs=[720]
		 test.condition_first=0
		 test.condition_index=0
		 test.n_conditions=5000
		 test.n_samples_per_condition=100
		 dataset.shuffle=False
		 dataset.dataset_nb=uspto50k
		 general.wandb.load_run_config=True
		 hydra.run.dir=../experiments/your_experiment_name/
		 test.total_cond_eval=5000
		 train.seed=329
		 diffusion.diffusion_steps=100
		 diffusion.diffusion_steps_eval=100
		 dataset.add_supernode_edges=True
		 dataset.num_workers=0

Evaluating samples

To evaluate samples, run the following command. Make sure ´your_experiment_name´ is the name of the experiment where you saved the samples earlier.

python3 src/evaluate_array_job.py
		 +experiment=7ck
		 general.wandb.mode=offline
		 general.wandb.run_id=7ckmnkvc
		 diffusion.edge_conditional_set=test
		 general.wandb.checkpoint_epochs=[720]
		 test.condition_first=0
		 test.condition_index=0
		 test.n_conditions=5000
		 test.n_samples_per_condition=100
		 dataset.shuffle=False
		 dataset.dataset_nb=uspto50k
		 general.wandb.load_run_config=True
		 hydra.run.dir=../experiments/your_experiment_name/
		 test.total_cond_eval=5000
		 train.seed=329
		 diffusion.diffusion_steps=100
		 diffusion.diffusion_steps_eval=100
		 dataset.add_supernode_edges=True
		 dataset.num_workers=0

Citation

@inproceedings{
laabid2025equivariant,
title={Equivariant Denoisers Cannot Copy Graphs: Align Your Graph Diffusion Models},
author={Najwa Laabid and Severi Rissanen and Markus Heinonen and Arno Solin and Vikas Garg},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=onIro14tHv}
}

About

The official implementation of 'Equivariant Denoisers Cannot Copy Graphs: Aligned your Graph Diffusion Models' (ICLR2025)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •