Skip to main content
Log in

Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems

  • Published:
View saved research
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We introduce an algorithm to solve linear inverse problems regularized with the total (gradient) variation in a gridless manner. Contrary to most existing methods, that produce an approximate solution which is piecewise constant on a fixed mesh, our approach exploits the structure of the solutions and consists in iteratively constructing a linear combination of indicator functions of simple polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For more details on this type of set convergence, see, e.g. [32, Chapter 4].

  2. The formulas given in (12) can be formally obtained by using the notion of shape derivative, see [23, Chapter 5].

  3. A complete implementation of Algorithm 3 can be found online at https://github.com/rpetit/tvsfw (see also https://github.com/rpetit/PyCheeger).

  4. If \(i>n\), we define , i.e. \(x_{n+1}=x_1\).

  5. Here, critical point is to be understood in the sense that the limit appearing in (20) is equal to zero for every \(\theta \).

  6. Condat’s total variation is introduced in [17]. See also [15] for a review of discretizations of the total variation.

  7. This only occurs when \(\lambda \) is small enough. For higher values of \(\lambda \), the output is similar to (d) or (e).

  8. We say that \({f:\mathbb {R}^2\rightarrow \mathbb {R}}\) is radial if there exists \({g:[0,+\infty [\rightarrow \mathbb {R}}\) such that \(f(x)=g(\Vert x\Vert )\) for almost every \(x\in \mathbb {R}^2\).

  9. In all the following, by decreasing we mean strictly decreasing.

  10. Assumption 1 is for example satisfied by \({\varphi :x\mapsto \text {exp}\left( -||x||^2/(2\sigma ^2)\right) }\) for any \({\sigma >0}\).

  11. This result can be proved using the radialisation operation previously introduced. We here, however, rely on classical arguments used in the analysis of geometric variational problems, which we will moreover also use later in this section.

  12. We recall that critical point is here to be understood in the sense that the limit appearing in (20) is equal to zero for every \(\theta \).

  13. To see this, notice that if we convolve \(u\circ h\) with an approximation of unity \(\rho _{\epsilon }\), then we have

    $$\begin{aligned} \frac{\partial }{\partial \theta }\left( (u\circ h)\star \rho _{\epsilon }\right) =(u\circ h)\star \frac{\partial }{\partial \theta }\rho _{\epsilon }=0\,, \end{aligned}$$

    hence the smooth function \((u\circ h)\star \rho _{\epsilon }\) is equal to some function \(g_{\epsilon }\) that depends only on r. Letting \(\epsilon \rightarrow 0^+\), we see that for almost every \((r,\theta )\), \(u\circ h\) only depends on r.

References

  1. Allaire, G., Dapogny, C., Jouve, F.: Chapter 1 - Shape and topology optimization. In: Bonito, A., Nochetto, R.H. (eds.) Handbook of Numerical Analysis, volume 22 of Geometric Partial Differential Equations - Part II, pp. 1–132. Elsevier (2021)

  2. Alter, F., Caselles, V., Chambolle, A.: Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7(1), 29–53 (2005)

    Article  MATH  Google Scholar 

  3. Ambrosio, L., Caselles, V., Masnou, S., Morel, J.-M.: Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. 3(1), 39–92 (2001)

    Article  MATH  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford, New York, Oxford Mathematical Monographs (2000)

  5. Bartels, S., Tovey, R., Wassmer, F.: Singular solutions, graded meshes, and adaptivity for total-variation regularized minimization problems (2021)

  6. Boyd, N., Schiebinger, G., Recht, B.: The alternating descent conditional gradient method for sparse inverse problems. SIAM J. Optim. 27(2), 616–639 (2017)

    Article  MATH  Google Scholar 

  7. Boyer, C., Chambolle, A., De Castro, Y., Duval, V., de Gournay, F., Weiss, P.: On representer theorems and convex regularization. SIAM J. Optim. 29(2), 1260–1281 (2019)

    Article  MATH  Google Scholar 

  8. Bredies, K., Carioni, M.: Sparsity of solutions for variational inverse problems with finite-dimensional data. Calc. Var. Partial. Differ. Equ. 59(1), 14 (2019)

    Article  MATH  Google Scholar 

  9. Bredies, K., Pikkarainen, H.K.: Inverse problems in spaces of measures. ESAIM: Control Optim. Calculus Var. 19(1), 190–218 (2013)

    MATH  Google Scholar 

  10. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)

    Article  MATH  Google Scholar 

  11. Carlier, G., Comte, M., Peyré, G.: Approximation of maximal Cheeger sets by projection. ESAIM: Math. Model. Numer. Anal. 43(1), 139–150 (2009)

    Article  MATH  Google Scholar 

  12. Castro, Y.D., Gamboa, F., Henrion, D., Lasserre, J.: Exact solutions to super resolution on semi-algebraic domains in higher dimensions. IEEE Trans. Inf. Theory 63(1), 621–630 (2017)

    Article  MATH  Google Scholar 

  13. Chambolle, A., Duval, V., Peyré, G., Poon, C.: Geometric properties of solutions to the total variation denoising problem. Inverse Prob. 33(1), 015002 (2016)

    Article  MATH  Google Scholar 

  14. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MATH  Google Scholar 

  15. Chambolle, A., Pock, T.: Chapter 6 - Approximating the total variation with finite differences or finite elements. In: Bonito, A., Nochetto, R.H. (eds.) Handbook of Numerical Analysis, volume 22 of Geometric Partial Differential Equations - Part II, pp. 383–417. Elsevier (2021)

  16. Condat, L.: Fast projection onto the simplex and the \(\ell _1\) ball. Math. Program. 158(1), 575–585 (2016)

    Article  MATH  Google Scholar 

  17. Condat, L.: Discrete total variation: new definition and minimization. SIAM J. Imag. Sci. 10(3), 1258–1290 (2017)

    Article  MATH  Google Scholar 

  18. Dautray, R., Lions, J.-L. (2012). Mathematical Analysis and Numerical Methods for Science and Technology: Volume 1 Physical Origins and Classical Methods. Springer Science & Business Media

  19. Denoyelle, Q., Duval, V., Peyre, G., Soubies, E.: The Sliding Frank-Wolfe algorithm and its application to super-resolution microscopy. Inverse Problems (2019)

  20. Duval, V.: Faces and extreme points of convex sets for the resolution of inverse problems. Habilitation à diriger des recherches, In preparation (2022)

  21. Fleming, W.H.: Functions with generalized gradient and generalized surfaces. Annali di Matematica 44(1), 93–103 (1957)

    Article  MATH  Google Scholar 

  22. Giusti.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, Birkhäuser Basel (1984)

  23. Henrot, A., Pierre, M.: Shape Variation and Optimization : A Geometrical Analysis. Number 28 in Tracts in Mathematics. European Mathematical Society (2018)

  24. Hormann, K., Agathos, A.: The point in polygon problem for arbitrary polygons. Comput. Geom. 20(3), 131–144 (2001)

    Article  MATH  Google Scholar 

  25. Iglesias, J.A., Mercier, G., Scherzer, O.: A note on convergence of solutions of total variation regularized linear inverse problems. Inverse Prob. 34(5), 055011 (2018)

    Article  MATH  Google Scholar 

  26. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: International Conference on Machine Learning, pp. 427–435. PMLR (2013)

  27. Maggi, Francesco: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139108133

    Book  MATH  Google Scholar 

  28. Ongie, G., Jacob, M.: Off-the-grid recovery of piecewise constant images from few fourier samples. SIAM J. Imag. Sci. 9(3), 1004–1041 (2016)

    Article  MATH  Google Scholar 

  29. Parini, E.: An introduction to the Cheeger problem. Surv. Math. Appl. 6, 9–21 (2011)

    MATH  Google Scholar 

  30. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. (AM-27). Princeton University Press (1951)

  31. Rao, N., Shah, P., Wright, S.: Forward–backward greedy algorithms for atomic norm regularization. IEEE Trans. Signal Process. 63(21), 5798–5811 (2015)

    Article  MATH  Google Scholar 

  32. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer-Verlag, Berlin Heidelberg, Grundlehren Der Mathematischen Wissenschaften (1998)

  33. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

  34. Tabti, S., Rabin, J., Elmoata, A.: Symmetric Upwind Scheme for Discrete Weighted Total Variation. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1827–1831 (2018)

  35. Viola, F., Fitzgibbon, A., Cipolla, R.: A unifying resolution-independent formulation for early vision. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 494–501 (2012)

Download references

Acknowledgements

The authors thank Robert Tovey for carefully reviewing the code used in the numerical experiments section, and for suggesting several modifications that significantly improved the results presented therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Petit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by a grant from Région Ile-De-France and by the ANR CIPRESSI project, Grant ANR-19-CE48-0017-01 of the French Agence Nationale de la Recherche.

Appendices

A Derivation of Algorithm 2

See [19, Sec. 4.1] for the case of the sparse spikes problem.

Lemma 2

Problem (\(\mathcal {P}_{\lambda }\)) is equivalent to

figure i

with

and , i.e. if u is a solution of (\(\mathcal {P}_{\lambda }\)), then we have that \({(u,|\mathrm {D}u|(\mathbb {R}^2))}\) is a solution of (\(\tilde{\mathcal {P}}_{\lambda }\)), and conversely any solution of (\(\tilde{\mathcal {P}}_{\lambda }\)) is of the form \((u,|\mathrm {D}u|(\mathbb {R}^2))\) with u a solution of (\(\mathcal {P}_{\lambda }\)).

Proof

If \(u^*\) is a solution of (\(\mathcal {P}_{\lambda }\)), then

$$\begin{aligned} T_{\lambda }(u^*)\le T_{\lambda }(0)=||y||^2/2\,. \end{aligned}$$

Hence, we have that \(|\mathrm {D}u^*|(\mathbb {R}^2)\le M\), which shows the feasible set of (\(\mathcal {P}_{\lambda }\)) can be restricted to functions u which are such that \({|\mathrm {D}u|(\mathbb {R}^2)\le M}\). It is then straightforward to show that the resulting program is equivalent to (\(\tilde{\mathcal {P}}_{\lambda }\)), in the sense defined above. \(\square \)

The objective \(\widetilde{T}_{\lambda }\) of (\(\tilde{\mathcal {P}}_{\lambda }\)) is now convex, differentiable and we have for all \((u,t)\in \mathrm {L}^2(\mathbb {R}^2)\times \mathbb {R}\)

$$\begin{aligned} \begin{aligned} \mathrm{d}\tilde{T}_{\lambda }(u,t):\mathrm {L}^2(\mathbb {R}^2)\times \mathbb {R}&\rightarrow \mathbb {R} \\ (v,s)&\mapsto \left[ \int _{\mathbb {R}^2} \Phi ^*(\Phi u-y)\,v\right] +\lambda s\,. \end{aligned} \end{aligned}$$

Moreover, the feasible set C is weakly compact. We can therefore apply Frank–Wolfe algorithm to (\(\tilde{\mathcal {P}}_{\lambda }\)). The following result shows how the linear minimization step (Line 2 of Algorithm 1) one has to perform at step k amounts to solving the Cheeger problem (7) associated with .

Proposition 14

Let \((u,t)\in C\) and . We also denote

(26)

Then, if \(\alpha \le 1\), (0, 0) is a minimizer of \(d\tilde{T}_{\lambda }(u,t)\) over C. Otherwise, there exists a simple set E achieving the supremum in (26) such that, denoting \(\epsilon =\text {sign}\left( \int _{E}\eta \right) \), \(\left( \frac{\epsilon M}{P(E)}\mathbf {1}_E, M\right) \) is a minimizer of \(d\tilde{T}_{\lambda }(u,t)\) on C.

Proof

The extreme points of C are (0, 0) and the elements of

$$\begin{aligned} \left\{ \left( \pm \frac{M}{P(E)}\mathbf {1}_E,M\right) ~\bigg |~E \text { is simple},~0<|E|<+\infty \right\} . \end{aligned}$$

Since \(d\tilde{T}_\lambda (u,t)\) is linear, it reaches its minimum on C at least at one of these extreme points. We hence have that

$$\begin{aligned} (0,0)\in \underset{(v,s)\in C}{\text {Argmin}}~d\tilde{T}_{\lambda }(u,t)(v,s) \end{aligned}$$

or that a minimizer can be found by finding an element of

$$\begin{aligned} \begin{aligned}&\underset{\begin{array}{c} E\text { simple}\\ \epsilon \in \{-1,1\} \end{array}}{\text {Argmin}}~ \left\langle \Phi u-y, \frac{\epsilon M}{P(E)}\Phi \mathbf {1}_E\right\rangle +\lambda M\\ =&\underset{\begin{array}{c} E\text { simple}\\ \epsilon \in \{-1,1\} \end{array}}{\text {Argmin}}~ \left\langle \Phi u-y,\frac{\epsilon }{\lambda P(E)}\Phi \mathbf {1}_E\right\rangle \\ =&\underset{\begin{array}{c} E\text { simple}\\ \epsilon \in \{-1,1\} \end{array}}{\text {Argmin}}~ \frac{\epsilon }{P(E)} \int _E \frac{1}{\lambda }\Phi ^*\left( \Phi u-y\right) . \end{aligned} \end{aligned}$$

This last problem is equivalent to finding an element of

$$\begin{aligned} \underset{E\text {simple}}{\text {Argmax}}~~\frac{1}{P(E)}\left| \int _E \eta \right| , \end{aligned}$$

in the sense that \(E^*\) is optimal for the latter if and only if the couple \(\left( E^*,\text {sign}\left( \int _{E^*}\eta \right) \right) \) is optimal for the former. We can moreover show that (0, 0) is optimal if and only if for all \({E\subset \mathbb {R}^2}\) such that \(0<|E|<+\infty \) and \(P(E)<+\infty \) we have:

$$\begin{aligned} \frac{1}{P(E)}\left| \int _{E}\eta \right| \le 1\,. \end{aligned}$$

\(\square \)

B Discussion on Line 10 of Algorithms 2 and 3

Considering “Appendix A” and Algorithm 1, the standard Frank–Wolfe update at iteration k would be to take \(u^{[k+1]}\) equal to \({\tilde{u}^{[k+1]}}\) with:

where \({\gamma _k=\frac{2}{k+2}}\), \(E_*\) is the set obtained at Line 5 and \(\epsilon _*\) is the sign of \(\int _{E_*}\eta ^{[k]}\). Now, one can write \(\tilde{u}^{[k+1]}\) as a linear combination of indicator functions of its level sets and then, apply the decomposition mentioned in Sect. 2.1 to each level set. This allows to find a family \((E_i)_{i=1}^N\) of simple sets of positive measure and \((a_i)_{i=1}^N\in \mathbb {R}^N\) such that \({\tilde{u}^{[k+1]}=\sum _{i=1}^N a_i\,\mathbf {1}_{E_i}}\) and

$$\begin{aligned} \left| \mathrm {D}\left( \sum \limits _{i=1}^N a_i\,\mathbf {1}_{E_i}\right) \right| (\mathbb {R}^2)=\sum \limits _{i=1}^N |a_i|\,P(E_i)\,. \end{aligned}$$

Moreover, it is possible to prove (see [20]) that for every \(i\ne j\)

  1. 1.

    Either \(E_i\subset E_j\), \(E_j\subset E_i\) or \(E_i\cap E_j=\emptyset \).

  2. 2.

    If \(\mathrm {sign}(a_i)=\mathrm {sign}(a_j)\) and \(E_i\cap E_j=\emptyset \), then it holds that \({\mathcal {H}^1(\partial ^* E_i\cap \partial ^* E_j)=0}\).

  3. 3.

    If \(\mathrm {sign}(a_i)=-\mathrm {sign}(a_j)\) and \(E_i\subset E_j\), then it holds again that \({\mathcal {H}^1(\partial ^* E_i\cap \partial ^* E_j)=0}\).

We hence deduce that for every \(b\in \mathbb {R}^N\) such that

$$\begin{aligned} \forall i\in \{1,\ldots ,N\},~\mathrm {sign}(a_i)=\mathrm {sign}(b_i)\,, \end{aligned}$$

we have:

$$\begin{aligned} \left| \mathrm {D}\left( \sum \limits _{i=1}^N b_i\,\mathbf {1}_{E_i}\right) \right| (\mathbb {R}^2)=\sum \limits _{i=1}^N |b_i|\,P(E_i)\,. \end{aligned}$$
(27)

This shows that if \(E^{[k+1]}=(E_1,\ldots ,E_N)\) and

$$\begin{aligned} \begin{aligned} a^{[k+1]}\in ~&\underset{b \in \mathbb {R}^N}{\text {Argmin}}&\frac{1}{2}||\Phi _E\,b -y||^2+\lambda \,\sum \limits _{i=1}^N P(E_i)\,|b_i| \\&\text {s.t.}&\forall i\in \{1,\ldots ,N\},~\mathrm {sign}(b_i)=\mathrm {sign}(a_i)\,, \end{aligned} \end{aligned}$$
(28)

then, defining \(u^{[k+1]}=\sum _{i=1}^N a_i^{[k+1]}\,\mathbf {1}_{E_i^{[k+1]}}\), we finally obtain \({T_{\lambda }(u^{[k+1]})\le T_{\lambda }(\tilde{u}^{[k+1]})}\), which ensures the validity of this update.

As a final note, let us mention that applying the decomposition mentioned in Sect. 2.1 to the level sets of \(\tilde{u}^{[k+1]}\) is a computationally challenging task. However, we stress again that, generically, \(\mathcal {H}^1(\partial ^*E_i\cap \partial ^*E_j)=0\) for every \(i\ne j\), so that the above procedure is never required in practice.

C Existence of Maximizers of the Cheeger Ratio Among Simple Polygons with At Most n Sides

Let \(\eta \in \mathrm {L}^2(\mathbb {R}^2)\cap C^0(\mathbb {R}^2)\) and \(n\ge 3\). We want to prove the existence of maximizers of the Cheeger ratio \(\mathcal {J}\) associated with \(\eta \) among simple polygons with at most n sides. We will in fact prove a slightly stronger result, namely the existence of maximizers of a relaxed energy which coincides with \(\mathcal {J}\) on simple polygons, and the existence of a simple polygon maximizing this relaxed energy.

We first begin by defining relaxed versions of the perimeter and the (weighted) area. To be able to deal with polygons with a number of vertices smaller than n, which will be useful in the following, we define for all \(m\ge 2\) and \({x\in \mathbb {R}^{m\times 2}}\) the following quantities:

where \(\chi _x(y)\) denotes the index (or winding number) of any parametrization of the polygonal curve \({[x_1,x_2],\ldots ,[x_m,x_1]}\) around \(y\in \mathbb {R}^2\). In particular, for every \(x\in \mathcal {X}_m\) (i.e. for every \({x\in \mathbb {R}^{m\times 2}}\) defining a simple polygon), we have

$$\begin{aligned} \mathcal {P}(x)=P(E_x) ~~\text {and}~~ \left| \mathcal {A}(x)\right| =\left| \int _{E_x}\eta \right| , \end{aligned}$$

and hence, as soon as \(\mathcal {P}(x)>0\):

$$\begin{aligned} \mathcal {J}(E_x)=\frac{|\mathcal {A}(x)|}{\mathcal {P}(x)}\,. \end{aligned}$$

This naturally leads us to define

and to denote, abusing notation, \(\mathcal {J}(x)=\left| \mathcal {A}(x)\right| /\mathcal {P}(x)\) for every \({x\in \mathcal {Y}_m}\).

The function \(\chi _x\) is constant on each connected component of \(\mathbb {R}^2\setminus \Gamma _x\) with . It takes values in \({\{- m,\ldots ,m\}}\) and is equal to zero on the only unbounded connected component. We also have \({\partial \,\text {supp}(\chi _x)\subset \Gamma _x}\). Moreover, \(\chi _x\) has bounded variation and for \(\mathcal {H}^1\)-almost every \({y\in \Gamma _x}\) there exists \(u_{\Gamma }^+(y),u_{\Gamma }^-(y)\) in \(\{-m,\ldots ,m\}\) such that

Now, we define

If \(\eta =0\), then the existence of maximizers is trivial. Otherwise, there exists a Lebesgue point \(x_0\) of \(\eta \) at which \(\eta \) is nonzero. Now, the family of regular n-gons inscribed in any circle centred at \(x_0\) has bounded eccentricity. Hence, if \(x_{n,r}\) defines a regular n-gon inscribed in a circle of radius r centred at \(x_0\), Lebesgue differentiation theorem ensures that

$$\begin{aligned} \underset{r\rightarrow 0^+}{\text {lim}}~\frac{\left| \int _{E_{x_{n,r}}}\eta \right| }{|E_{x_{n,r}}|}>0\,, \end{aligned}$$

and the fact that \(\alpha >0\) easily follows.

Lemma 3

Let \(C>0\). There exists \(R>0\) and \(c>0\) such that

$$\begin{aligned} \forall x\in \mathcal {Y}_n,~ \mathcal {J}(x)\ge C\implies \mathcal {P}(x)\ge c \text { and } \Vert x_i\Vert \le R \text { for all } i. \end{aligned}$$

Proof

The proof is similar to that of Lemma 1.

Upper bound on the perimeter: the integrability of \(\eta ^2\) yields that for every \(\epsilon >0\) there exists \(R_1>0\) such that

$$\begin{aligned} \int _{\mathbb {R}^2\setminus B(0,R_1)}\eta ^2\le \epsilon ^2\,. \end{aligned}$$
(29)

Let \(\epsilon >0\) and \(R_1>0\) such that (29) holds. We have

$$\begin{aligned} \begin{aligned} \mathcal {P}(x)&\le \frac{1}{C}\left| \mathcal {A}(x)\right| \\&\le \frac{1}{C}\left[ \left| \int _{\mathbb {R}^2\cap B(0,R)}\eta \,\chi _x\right| +\left| \int _{\mathbb {R}^2\setminus B(0,R)}\eta \,\chi _x\right| \right] \\&\le \frac{1}{C}\left[ \Vert \eta \Vert _{\mathrm {L}^2}\,\Vert \chi _x\Vert _{\mathrm {L}^\infty }\,\sqrt{|B(0,R)|}+\epsilon \,\Vert \chi _x\Vert _{\mathrm {L}^2}\right] \\&\le \frac{1}{C}\left[ \Vert \eta \Vert _{\mathrm {L}^2}\,n\,\sqrt{|B(0,R)|}+\epsilon \,\frac{1}{\sqrt{c_2}}|\mathrm {D}\chi _x|(\mathbb {R}^2)\right] \\&\le \frac{1}{C}\left[ \Vert \eta \Vert _{\mathrm {L}^2}\,n\,\sqrt{|B(0,R)|}+\epsilon \,\frac{2n}{\sqrt{c_2}} \mathcal {P}(x)\right] . \end{aligned} \end{aligned}$$

Now, taking

we finally get that \({\mathcal {P}(x)\le c'}\).

Inclusion in a ball: we take \(\epsilon =\frac{\sqrt{c_2}}{4n}\) and fix \({R_2>0}\) such that \(\int _{\mathbb {R}^2\setminus B(0,R_2)}\eta ^2\le \epsilon ^2\). Let us show that

$$\begin{aligned} \text {supp}(\chi _x)\cap B(0,R_2)\ne \emptyset \,. \end{aligned}$$

By contradiction, if \(\text {supp}(\chi _x)\cap B(0,R_2)= \emptyset \), we would have:

$$\begin{aligned} \begin{aligned} \mathcal {P}(x)&\le \frac{1}{C}\left| \mathcal {A}(x)\right| \\&=\frac{1}{C} \left| \int _{\mathbb {R}^2\setminus B(0,R_2)}\eta \,\chi _x\right| \\&\le \sqrt{\int _{\mathbb {R}^2\setminus B(0,R_2)}\eta ^2}~\Vert \chi _x\Vert _{\mathrm {L}^2}\\&\le \frac{\epsilon }{\sqrt{c_2}}|D\chi _x|(\mathbb {R}^2)\le \frac{2n\,\epsilon }{\sqrt{c_2}}\,\mathcal {P}(x)\,. \end{aligned} \end{aligned}$$

Dividing by \(\mathcal {P}(x)>0\) yields a contradiction. Now, since

$$\begin{aligned} \partial \, \text {supp}(\chi _x)\subset \Gamma _x\,, \end{aligned}$$

we have \(\text {diam}(\text {supp}(\chi _x))\le \mathcal {P}(x)\le c'\) which shows

This in turn implies that \(\Vert x_i\Vert \le R\) for all i.

Lower bound on the perimeter: the integrability of \(\eta ^2\) shows that, for every \(\epsilon >0\), there exists \(\delta >0\) such that

$$\begin{aligned} \forall E\subset \mathbb {R}^2,~|E|\le \delta \implies \left| \int _{E}\eta ^2\right| \le \epsilon ^2\,. \end{aligned}$$

Taking , we obtain that if \(|\text {supp}(\chi _x)|\le \delta \)

$$\begin{aligned} \begin{aligned} \mathcal {P}(x)&\le \frac{1}{C}\left| \mathcal {A}(x)\right| =\frac{1}{C}\left| \int _{\text {supp}(\chi _x)}\eta \right| \\&\le \frac{1}{C}\sqrt{\int _{\text {supp}( \chi _x)}\eta ^2}~\sqrt{|\text {supp}(\chi _x)|}\\&\le \frac{\epsilon }{C\sqrt{c_2}}\,P(\text {supp}(\chi _x))\\&\le \frac{\epsilon }{C\sqrt{c_2}}\,\mathcal {P}(x)\,, \end{aligned} \end{aligned}$$

the last inequality holding because \(\partial \,\text {supp}(\chi _x)\subset \Gamma _x\). We get a contradiction since \(\mathcal {P}(x)\) is positive. \(\square \)

Applying Lemma 3 with, e.g. \(C=\alpha /2\), and defining

we see that any maximizer of \(\mathcal {J}\) over \(\mathcal {Y}'_n\) (if it exists) is also a maximizer of \(\mathcal {J}\) over \(\mathcal {Y}_n\), and conversely.

Lemma 4

Let \(x\in \mathbb {R}^{n\times 2}\). Then, for every \(a\in \mathbb {R}^2\) we have

$$\begin{aligned} \begin{aligned}&\mathcal {A}(x)=\sum \limits _{i=1}^n\mathrm {sign}(\mathrm {det}(x_i-a~x_{i+1}-a))\int _{a x_i x_{i+1}}\eta \\&=\sum \limits _{i=1}^n \mathrm {det}(x_i-a~x_{i+1}-a)\int _{T_1}\eta ((x_i-a~x_{i+1}-a)\,y)\,\mathrm{d}y\,, \end{aligned} \end{aligned}$$

where \(a x_i x_{i+1}\) denotes the triangle with vertices \(a,x_i,x_{i+1}\) and is the unit triangle.

Proof

Let us show that for all \({a\in \mathbb {R}^2}\) we have

$$\begin{aligned} \chi _x=\sum \limits _{i=1}^n\mathrm {sign}(\mathrm {det}(x_i-a~x_{i+1}-a))\,\mathbf {1}_{a x_i x_{i+1}} \end{aligned}$$
(30)

almost everywhere. First, we have that \(y\in \mathbb {R}^2\) is in the (open) triangle \(ax_ix_{i+1}\) if and only if the ray issued from y directed by \(y-a\) intersects \(]x_i,x_{i+1}[\). Moreover, if y is in this triangle, then

$$\begin{aligned} \text {sign}(\text {det}(x_i-a~x_{i+1}-a))=\text {sign}\left( (y-a)\cdot (x_{i+1}-x_i)^{\perp }\right) . \end{aligned}$$

The above hence shows that, if \(y\in \mathbb {R}^2\setminus \cup _{i=1}^n[x_i,x_{i+1}]\) does not belong to any of the segments \([a,x_i]\), evaluating the right hand side of (30) at y amounts to computing the winding number \(\chi _x(y)\) by applying the ray-crossing algorithm described in [24]. This in particular means that (30) holds almost everywhere, and the result follows. \(\square \)

From Lemma 4, we deduce that \(\mathcal {A}\) is continuous on \(\mathbb {R}^{n\times 2}\). This is also the case of \(\mathcal {P}\). Now, \(\mathcal {Y}'_n\) is compact and included in \(\mathcal {Y}_n\), hence the existence of maximizers of \(\mathcal {J}\) over \(\mathcal {Y}'_n\), which in turn implies the existence of maximizers of \(\mathcal {J}\) over \(\mathcal {Y}_n\).

Let us now show there exists a maximizer which belongs to \(\mathcal {X}_n\). To do so, we rely on the following lemma

Lemma 5

Let \(m\ge 3\) and \(x\in \mathcal {Y}_m\setminus \mathcal {X}_m\). Then, there exists \(m'\) with \(2\le m'<m\) and \(y\in \mathcal {Y}_{m'}\) such that

$$\begin{aligned} \mathcal {J}(x)\le \mathcal {J}(y)\,. \end{aligned}$$

Proof

If \(x\in \mathcal {Y}_m\setminus \mathcal {X}_m\), then \([x_1,x_2],\ldots ,[x_m,x_1]\) is not simple. If there exists i with \(x_i=x_{i+1}\), then

$$\begin{aligned} y=(x_1,\ldots ,x_i,x_{i+2},\ldots ,x_m) \end{aligned}$$

is suitable, and likewise if \(x_1=x_m\), then

$$\begin{aligned} y=(x_1,\ldots ,x_{m-1}) \end{aligned}$$

is suitable. Otherwise, we distinguish the following cases:

If there exists \(i<j\) with \(x_i=x_j\): we define

$$\begin{aligned} \begin{aligned} y&=(x_1,\ldots ,x_i,x_{j+1},\ldots ,x_m)\in \mathbb {R}^{m-(j-i)}\,,\\ z&=(x_i,x_{i+1},\ldots ,x_{j-1})\in \mathbb {R}^{j-i}\,. \end{aligned} \end{aligned}$$

We notice that \(2\le j-i<m\) and \(2\le m-(j-i)<m\).

If there exists \(i<j\) with \(x_i\in ]x_j,x_{j+1}[\): we necessarily have \((i,j)\ne (1,m)\). We define

$$\begin{aligned} \begin{aligned} y&=(x_1,\ldots ,x_i,x_{j+1},\ldots ,x_m)\in \mathbb {R}^{m-(j-i)}\,,\\ z&=(x_i,x_{i+1},\ldots ,x_{j})\in \mathbb {R}^{j-i+1}\,. \end{aligned} \end{aligned}$$

We again have \(2\le m-(j-i)<m\), and since \((i,j)\ne (1,m)\), we have \(j-i<m-1\) which shows \(2\le j-i+1<m\).

If there exists \(i<j\) with \(x_j\in ]x_i,x_{i+1}[\): we necessarily have \(j>i+1\). We define

$$\begin{aligned} \begin{aligned} y&=(x_1,\ldots ,x_i,x_j,\ldots ,x_m)\in \mathbb {R}^{m-(j-i)+1}\,,\\ z&=(x_{i+1},\ldots ,x_{j})\in \mathbb {R}^{j-i}\,. \end{aligned} \end{aligned}$$

We again have \(2\le j-i<m\), and since \(j>i+1\) we obtain that \(2\le {m-(j-i)+1<m}\).

If there exists \(i<j\) with \(x'\in ]x_i,x_{i+1}[\,\cap \,]x_j,x_{j+1}[\): if we have \(j=i+1\), then either \(x_{i+2}\in ]x_i,x_{i+1}[\) or \(x_i\in ]x_{i+1},x_{i+2}[\) and in both cases we fall back on the previously treated cases. The same holds if \((i,j)=(1,m)\). Otherwise, we define

$$\begin{aligned} \begin{aligned} y&=(x_1,\ldots ,x_i,x',x_{j+1},\ldots ,x_m)\in \mathbb {R}^{m-(j-i)+1}\,,\\ z&=(x',x_{i+1},\ldots ,x_{j})\in \mathbb {R}^{j-i+1}\,. \end{aligned} \end{aligned}$$

Since \(j>i+1\) and \((i,j)\ne (1,m)\), we get \(2\le m-(j-i)+1<m\) and \(2\le j-i+1<m\).

Now, one can see that in each case we have \({\mathcal {P}(x)=\mathcal {P}(y)+\mathcal {P}(z)}\) and \(\chi _x=\chi _y+\chi _z\) almost everywhere, which in turn gives that \({\mathcal {A}(x)=\mathcal {A}(y)+\mathcal {A}(z)}\). We hence get that \(\mathcal {P}(y)=0\) or \(\mathcal {P}(z)=0\), and in this case \(\mathcal {J}(x)=\mathcal {J}(y)\) or \(\mathcal {J}(x)=\mathcal {J}(z)\), or that \(\mathcal {P}(y)>0\) and \(\mathcal {P}(z)>0\), which yields

$$\begin{aligned} \begin{aligned} \frac{\left| \mathcal {A}(x)\right| }{\mathcal {P}(x)}&\le \frac{\left| \mathcal {A}(y)\right| +\left| \mathcal {A}(z)\right| }{\mathcal {P}(y)+\mathcal {P}(z)}\\&=\frac{\mathcal {P}(y)}{\mathcal {P}(y)+\mathcal {P}(z)} \frac{\left| \mathcal {A}(y)\right| }{\mathcal {P}(y)}+ \frac{\mathcal {P}(z)}{\mathcal {P}(y)+\mathcal {P}(z)} \frac{\left| \mathcal {A}(z)\right| }{\mathcal {P}(z)}\,. \end{aligned} \end{aligned}$$

Hence, \(\mathcal {J}(x)\) is smaller than a convex combination of \(\mathcal {J}(y)\) and \(\mathcal {J}(z)\), which gives that it is smaller than \(\mathcal {J}(y)\) or \(\mathcal {J}(z)\). This shows that y or z is suitable. \(\square \)

We can now prove our final result, i.e. that there exists \({x_*\in \mathcal {X}_n}\) such that

$$\begin{aligned} \forall x\in \mathcal {Y}_n,~\mathcal {J}(x_*)\ge \mathcal {J}(x)\,. \end{aligned}$$

Indeed, repeatedly applying the above lemma starting with a maximizer \(x_*\) of \(\mathcal {J}\) over \(\mathcal {Y}_n\), we either have that there exists m with \(3\le m\le n\) and \({x'_*\in \mathcal {X}_m}\) such that \(\mathcal {J}(x_*)=\mathcal {J}(x'_*)\), or that there exists \(y\in \mathcal {Y}_2\) such that \(\mathcal {J}(x_*)\le \mathcal {J}(y)\), which is impossible since in that case \(\mathcal {J}(y)=0\) and \(\mathcal {J}(x_*)=\alpha >0\). We hence have \(x'_*\in \mathcal {X}_m\) such that

$$\begin{aligned} \forall x\in \mathcal {Y}_n,~\mathcal {J}(x'_*)=\mathcal {J}(x_*)\ge \mathcal {J}(x)\,. \end{aligned}$$

We can finally build \(x''_*\in \mathcal {X}_n\) such that \(\mathcal {J}(x''_*)=\mathcal {J}(x'_*)\) by adding dummy vertices to \(x'_*\), which finally allows to conclude.

D Proof of Proposition 6

First, let us stress that for any function v that is piecewise constant on \((C_{i,j})_{(i,j)\in [ 1,N]^2}\) and that is equal to 0 outside \({[-R,R]^2}\), we have \(J(v)=h\,\Vert \nabla ^h v\Vert _{1,1}\) where by abuse of notation \(\nabla ^h v\) is given by (16) with \(v_{i,j}\) the value of v in \(C_{i,j}\). Hence, \(J^h(u^h) \le 1\) for all h implies that \(J(u^h)\) (and hence \(\Vert u^h\Vert _{\mathrm {L}^2}\)) is uniformly bounded in h. There hence exists a (not relabeled) subsequence that converges strongly in \(\mathrm {L}^1_{loc}(\mathbb {R}^2)\) and weakly in \(\mathrm {L}^2(\mathbb {R}^2)\) to a function u, with moreover \(\mathrm {D}u^h\overset{*}{\rightharpoonup }\mathrm {D}u\).

Let us now take \(\phi =(\phi ^{(1)},\phi ^{(2)})\in C^{\infty }_c(\mathbb {R}^2,\mathbb {R}^2)\) such that \({||\phi ||_{\infty }\le 1}\). The weak-* convergence of the gradients gives us that

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^2}\phi \cdot \mathrm{d}Du =\underset{h\rightarrow 0}{\text {lim}}~\int _{\mathbb {R}^2}\phi \cdot \mathrm{d}Du^h\\ =&\underset{h\rightarrow 0}{\text {lim}}~\sum \limits _{i=0}^N\sum \limits _{j=0}^N \begin{pmatrix}\int _{C^h_{i,j}\cap C^h_{i+1,j}}\phi ^{(1)}\,\mathrm{d}\mathcal {H}^1\\ \int _{C^h_{i,j}\cap C^h_{i,j+1}}\phi ^{(2)}\,\mathrm{d}\mathcal {H}^1\end{pmatrix}\cdot \nabla ^h u^h_{i,j}\,. \end{aligned} \end{aligned}$$

One can moreover show there exists \(C>0\) such that for h small enough and all (ij), we have:

$$\begin{aligned} \begin{aligned}&\left| \left[ \int _{C^h_{i,j}\cap C^h_{i+1,j}}\phi ^{(1)}\,\mathrm{d} \mathcal {H}^1\right] -h\,\phi ^{(1)}(x^h_{i+1,j+1})\right| \le Ch^2\,,\\&\left| \left[ \int _{C^h_{i,j}\cap C^h_{i,j+1}}\phi ^{(2)}\,\mathrm{d} \mathcal {H}^1\right] -h\,\phi ^{(2)}(x^h_{i+1,j+1})\right| \le Ch^2\,,\\ \end{aligned} \end{aligned}$$

with . We use the above inequalities and the fact \(\Vert \phi (x)\Vert \le 1\) for all x to obtain the existence of \(C'>0\) such that for h small enough and for all (ij) we have:

$$\begin{aligned} \left\| \begin{pmatrix}\int _{C^h_{i,j}\cap C^h_{i+1,j}}\phi ^{(1)}\,\mathrm{d}\mathcal {H}^1\\ \int _{C^h_{i,j}\cap C^h_{i,j+1}}\phi ^{(2)}\,\mathrm{d}\mathcal {H}^1\end{pmatrix}\right\| _2\le h\,\sqrt{1+C'h}\,. \end{aligned}$$

This finally yields

$$\begin{aligned}\begin{aligned}&\sum \limits _{i=0}^N\sum \limits _{j=0}^N \begin{pmatrix}\int _{C^h_{i,j}\cap C^h_{i+1,j}}\phi ^{(1)}\,\mathrm{d}\mathcal {H}^1\\ \int _{C^h_{i,j}\cap C^h_{i,j+1}}\phi ^{(2)}\,\mathrm{d}\mathcal {H}^1\end{pmatrix}\cdot \nabla ^h u^h_{i,j}\\ \le&\sum \limits _{i=0}^N\sum \limits _{j=0}^N h\,\sqrt{1+C'h} ~\Vert \nabla ^h u^h_{i,j}\Vert =\sqrt{1+C'h}~J^h(u^h)\,, \end{aligned} \end{aligned}$$

which gives

$$\begin{aligned} \int _{\mathbb {R}^2}\phi \cdot \mathrm{d}Du\le \underset{h\rightarrow 0}{\text {lim sup}}~ \sqrt{1+C'h}~J^h(u^h)\le 1\,. \end{aligned}$$

We now have to show that

$$\begin{aligned} \forall v\in \mathrm {L}^2(\mathbb {R}^2),~J(v)\le 1\implies \int _{\mathbb {R}^2}\eta \,u\le \int _{\mathbb {R}^2}\eta \,v\,. \end{aligned}$$

Let \(v\in C^{\infty }([-R,R]^2)\) be such that \(J(v)\le 1\). We define

One can then show that

$$\begin{aligned} \underset{h\rightarrow 0}{\text {lim}}~J^h(v^h)=J(v)=1\,, \end{aligned}$$

so that for every \(\delta >0\) we have \({J^h\left( \frac{v^h}{1+\delta }\right) \le 1}\) for h small enough. Now, this yields

$$\begin{aligned} \begin{aligned} \int _{[-R,R]^2}\eta \,u&=\underset{h\rightarrow 0}{\text {lim}}~\int _{[-R,R]^2}\eta \,u^h\\&\le \underset{h\rightarrow 0}{\text {lim}}~\int _{[-R,R]^2}\eta \,\frac{v^h}{1+\delta }\\&=\int _{[-R,R]^2}\eta \,\frac{v}{1+\delta }\,. \end{aligned} \end{aligned}$$

Since this holds for all \(\delta >0\), we get that

$$\begin{aligned} \int _{[-R,R]^2}\eta \,u\le \int _{[-R,R]^2}\eta \,v\,. \end{aligned}$$
(31)

Finally, if \(v\in \mathrm {L}^2(\mathbb {R}^2)\) is such that \(v=0\) outside \([-R,R]^2\) and \({J(v)\le 1}\), by standard approximation results (see [4, remark 3.22]), we also have that (31) holds, and hence, u solves (6). Finally, since u solves (6), its support is included in \([-R,R]^2\), which shows the strong \(\mathrm {L}^1_{loc}(\mathbb {R}^2)\) convergence of \((u^h)\) towards \(u^*\) in fact implies its strong \(\mathrm {L}^1(\mathbb {R}^2)\) convergence.

E First Variation of the Perimeter and Weighted Area Functionals for Simple Polygons

We stress that since \(\mathcal {X}_n\) is open, for every \({x\in \mathcal {X}_n}\) the functions \({h\mapsto P(E_{x+h})}\) and \(h\mapsto \int _{E_{x+h}}\eta \) are well-defined in a neighbourhood of zero (for any locally integrable function \(\eta \)). We now compute the first variation of these two quantities.

Proposition 15

Let \(x\in \mathcal {X}_n\). Then, we have

$$\begin{aligned} P(E_{x+h})=P(E_x)-\sum \limits _{i=1}^n \left\langle h_i,\tau _i-\tau _{i-1}\right\rangle + o\left( \Vert h\Vert \right) , \end{aligned}$$
(32)

where is the unit tangent vector to \([x_i,x_{i+1}]\).

Proof

If \(\Vert h\Vert \) is small enough, we have:

$$\begin{aligned} \begin{aligned}&P(E_{x+h})=\sum \limits _{i=1}^n\Vert x_{i+1}-x_i+h_{i+1}-h_i\Vert \\&\quad =\sum \limits _{i=1}^n\sqrt{\Vert x_{i+1}-x_i+h_{i+1}-h_{i}\Vert ^2}\\&\quad =\sum \limits _{i=1}^n\Vert x_{i+1}-x_i\Vert \\&\qquad \times \left( 1+\frac{\langle x_{i+1}-x_i,h_{i+1}-h_i\rangle }{\Vert x_{i+1}-x_i\Vert ^2}+o\left( \Vert h\Vert \right) \right) \\&\quad =~P(E_x)+\sum \limits _{i=1}^n\langle \tau _i,h_{i+1}-h_i\rangle +o\left( \Vert h\Vert \right) ,\\ \end{aligned} \end{aligned}$$

and the result follows by re-arranging the terms in the sum. \(\square \)

Proposition 16

Let \(x\in \mathcal {X}_n\) and \(\eta \in C^0(\mathbb {R}^2)\). Then, we have

$$\begin{aligned} \int _{E_{x+h}}\eta =\int _{E_x}\eta +\sum \limits _{i=1}^n \left\langle h_i,w_i^-\nu _{i-1}+w_i^+\nu _i\right\rangle + o\left( \Vert h\Vert \right) ,\nonumber \\ \end{aligned}$$
(33)

where \(\nu _i\) is the outward unit normal to \(E_x\) on \(]x_i,x_{i+1}[\) and

Proof

Our proof relies on the following identity (see Lemma 4 for a proof of a closely related formula):

$$\begin{aligned} \int _{E_x}\eta =\text {sign}\left( \sum \limits _{i=1}^n \det (x_i~x_{i+1})\right) \sum \limits _{i=1}^n \omega (x_i,x_{i+1})\,, \end{aligned}$$

with

where is the unit triangle. Assuming \(\eta \in C^1(\mathbb {R}^2)\) and denoting \(\mathrm {adj}(A)\) the adjugate of a matrix A, we have:

$$\begin{aligned} \begin{aligned}&\omega (a_1+h_1,a_2+h_2) =~\omega (a_1,a_2)+\mathrm {det}(a_1~a_2)\\&\qquad \times \int _{T_1}\nabla \eta ((a_1~a_2)\,y)\cdot ((h_1~h_2)y)\,\mathrm{d}y\\&\qquad +~\mathrm {tr}\left( \mathrm {adj}(a_1~a_2)^T(h_1~h_2)\right) \\&\qquad \times \int _{T_1}\eta ((a_1~a_2)\,y)\,\mathrm{d}y+o(\Vert h\Vert )\\&\quad =~\omega (a_1,a_2)+\mathrm {sign}(\mathrm {det}(a_1~a_2))\\&\qquad \times \int _{Oa_1a_2}\nabla \eta (y)\cdot ((h_1~h_2)\,(a_1~a_2)^{-1})\,y)\,\mathrm{d}y\\&\qquad +\frac{\mathrm {tr}\left( \mathrm {adj}(a_1~a_2)^T(h_1~h_2) \right) }{|\mathrm {det}(a_1~a_2)|}\\&\qquad \times \int _{Oa_1 a_2}\eta (y)\,\mathrm{d}y+o(\Vert h\Vert )\,. \end{aligned} \end{aligned}$$

Denoting , we obtain:

$$\begin{aligned} \begin{aligned}&\omega (a_1+h_1,a_2+h_2)\\&\quad =~\omega (a_1,a_2)+\mathrm {sign}(\mathrm {det}(a_1~a_2))\\&\qquad \int _{Oa_1a_2}\left[ \nabla \eta \cdot g+\eta \,\mathrm {div}g\right] +o(\Vert h\Vert )\\&\quad =\omega (a_1,a_2)+\mathrm {sign}(\mathrm {det}(a_1~a_2))\\&\qquad \int _{\partial (Oa_1a_2)}\eta \,(g\cdot \nu _{Oa_1a_2})\,d\mathcal {H}^1+o(\Vert h\Vert )\,, \end{aligned} \end{aligned}$$

where we used Gauss–Green theorem to obtain the last equality. Now, if \(\Vert h\Vert \) is small enough, then

$$\begin{aligned} \sum \limits _{i=1}^n\det (x_i+h_i~~x_{i+1}+h_{i+1}) ~\text {and}~ \sum \limits _{i=1}^n\det (x_i~x_{i+1}) \end{aligned}$$

have the same sign, so that, defining

$$\begin{aligned} g_i:y\mapsto ((h_i~h_{i+1})(x_i~x_{i+1})^{-1}\,y)\,, \end{aligned}$$

we get

$$\begin{aligned} d\left( \int _{E_{\bullet }}\eta \right) (x)\,.\,h=\epsilon \sum \limits _{i=1}^n\mathrm {sign}(\mathrm {det}(x_i~x_{i+1}))~\omega _i\,, \end{aligned}$$

with

Then, one can decompose each integral in the sum and show the integrals over \([0,x_i]\) cancel out each other, which allows to obtain

$$\begin{aligned} d\left( \int _{E_{\bullet }}\eta \right) (x)\,.\,h=\sum \limits _{i=1}^n\int _{[x_i,x_{i+1}]} \eta \,(g_i\cdot \nu _i)\,\mathrm{d}\mathcal {H}^1\,. \end{aligned}$$

But now if \(y\in [x_i,x_{i+1}]\), then

$$\begin{aligned} (x_i~x_{i+1})^{-1}y=\frac{1}{\Vert x_{i+1}-x_i\Vert } \begin{pmatrix}\Vert y-x_{i+1}\Vert \\ \Vert y-x_i\Vert \end{pmatrix}\,, \end{aligned}$$

and the result follows by re-arranging the terms in the sum. One can then use an approximation argument as in [27, Proposition 17.8] to show it also holds when \(\eta \) is only continuous. \(\square \)

F Results Used in Section 7

1.1 F.1 Properties of the Radialisation Operator

The goal of this subsection, based on [18, II.1.4], is to prove the following result:

Proposition 17

Let \(u\in \mathrm {L}^2(\mathbb {R}^2)\) be s.t. \({|\mathrm {D}u|(\mathbb {R}^2)<+\infty }\). Then, \({|\mathrm {D}\tilde{u}|(\mathbb {R}^2)\le |\mathrm {D}u|(\mathbb {R}^2)}\) with equality if and only if u is radial.

First, one can show that for every \(u\in \mathrm {L}^2(\mathbb {R}^2)\), the radialisation \(\tilde{u}\) of u defined in Sect. 7 by

$$\begin{aligned} \tilde{u}(x)=\int _{\mathbb {S}^1}u(\Vert x\Vert \,e)\,\mathrm{d}\mathcal {H}^1(e) \end{aligned}$$
(34)

is well defined and belongs to \(\mathrm {L}^2(\mathbb {R}^2)\). Then, a change of variables in polar coordinates shows that, as stated in the following lemma, the radialisation operator is self-adjoint.

Lemma 6

We have

$$\begin{aligned} \forall u,v\in \mathrm {L}^2(\mathbb {R}^2),~\int _{\mathbb {R}^2}\tilde{u}(x)\,v(x)\,\mathrm{d}x=\int _{\mathbb {R}^2}u(x)\,\tilde{v}(x)\,\mathrm{d}x\,. \end{aligned}$$

We now state a useful identity:

Lemma 7

For every \(\varphi \in C^{\infty }_c(\mathbb {R}^2\setminus \{0\},\mathbb {R}^2)\), we have:

$$\begin{aligned} \left\langle \mathrm {D}\tilde{u},\varphi \right\rangle =\left\langle \mathrm {D}u,\widetilde{\varphi \cdot \frac{x}{\Vert x\Vert }}\right\rangle , \end{aligned}$$

where \(\varphi \cdot \frac{x}{\Vert x\Vert }\) denotes the mapping \(x\mapsto \left( \varphi (x)\cdot \frac{x}{\Vert x\Vert }\right) \).

Proof

From Lemma 6, we get

$$\begin{aligned} \left\langle \mathrm {D}\tilde{u},\varphi \right\rangle =\int _{\mathbb {R}^2}\tilde{u}\, \mathrm {div}\varphi =\int _{\mathbb {R}^2}u\,\widetilde{\mathrm {div}\varphi }\,. \end{aligned}$$

Using polar coordinates, defining

we get

$$\begin{aligned} \begin{aligned} \left( \mathrm {div}\varphi \right) (h(r,\theta ))=&~~~~\frac{1}{r}\frac{\partial }{\partial r}(r(\varphi _r \circ h))(r,\theta )\\&\,+\frac{1}{r}\frac{\partial }{\partial \theta }(\varphi _{\theta } \circ h)(r,\theta )\,, \end{aligned} \end{aligned}$$
(35)

where \(\varphi _r\) and \(\varphi _{\theta }\), respectively, denote the radial and orthoradial components of \(\varphi \), i.e.

$$\begin{aligned} \varphi _r(x)=\varphi (x)\cdot \frac{x}{\Vert x\Vert } \text { and }\varphi _{\theta }(x)=\varphi (x)\cdot \frac{x^{\perp }}{\Vert x\Vert }\,. \end{aligned}$$

The second term in (35) has zero circular mean. Interchanging derivation and integration, we get that the radialisation of the first term equals \(\frac{1}{r}\frac{\partial }{\partial r}\left( r\left( \widetilde{\varphi _r}\circ h\right) \right) \), which yields

$$\begin{aligned} \left( \widetilde{\mathrm {div}\varphi }\right) (x)=\mathrm {div}\left( \widetilde{\varphi \cdot \frac{x}{\Vert x\Vert }}\right) (x)\,. \end{aligned}$$

\(\square \)

We now introduce the radial and orthoradial components of the gradient, which are Radon measures on  defined by

$$\begin{aligned} \begin{aligned} \forall \psi \in C^{\infty }_c(U),~\left\langle \mathrm {D}_{\mathrm {rad}}u, \psi \right\rangle&=\left\langle \mathrm {D}u ,\psi \,\frac{x}{|x|}\right\rangle ,\\ \left\langle \mathrm {D}_{\mathrm {orth}}u,\psi \right\rangle&=\left\langle \mathrm {D}u ,\psi \,\frac{x^\perp }{|x|}\right\rangle . \end{aligned} \end{aligned}$$

Proposition 18

There exist two \(|\mathrm {D}u|\)-measurable mappings from U to \(\mathbb {R}\), denoted \(g_{\mathrm {rad}}\) and \(g_{\mathrm {orth}}\), such that

$$\begin{aligned} g_{\mathrm {rad}}^2+g_{\mathrm {orth}}^2\le 1~|\mathrm {D}u|\text {-almost everywhere} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \forall \psi \in C^{\infty }_c(U),~\langle \mathrm {D}_{\mathrm {rad}}u,\psi \rangle&=\int _U \psi (x)\,g_{\mathrm {rad}}(x)\,\mathrm{d}|\mathrm {D}u|(x)\,, \\ \langle \mathrm {D}_{\mathrm {orth}}u,\psi \rangle&=\int _U \psi (x)\,g_{\mathrm {orth}}(x)\,\mathrm{d}|\mathrm {D}u|(x)\,. \end{aligned} \end{aligned}$$
(36)

Proof

The existence of the \(|\mathrm {D}u|\)-measurable mappings \(g_{\mathrm {rad}}\) and \(g_{\mathrm {orth}}\), as well as (36), come from Lebesgue differentiation theorem, and the fact \(\mathrm {D}_{\mathrm {rad}}u\) and \(\mathrm {D}_{\mathrm {orth}}u\) are absolutely continuous with respect to \(\mathrm {D}u\). Now, for every open set \(A\subset U\) we have:

$$\begin{aligned} \begin{aligned} |\mathrm {D}u|(A)&=\sup \left\{ \left\langle \mathrm {D}u,\varphi \right\rangle \,\big |\,\varphi \in C^{\infty }_c(A,\mathbb {R}^2),~\Vert \varphi \Vert _{\infty }\le 1\right\} \\&=\sup \bigg \{\left\langle \mathrm {D}u,\varphi _1\frac{x}{\Vert x\Vert }\right\rangle + \left\langle \mathrm {D}u,\varphi _2\frac{x^{\perp }}{\Vert x\Vert }\right\rangle \text { s.t.}\\&\qquad \qquad ~\varphi _i\in C^{\infty }_c(A),~\left\| \varphi _1^2+\varphi _2^2\right\| _{\infty }\le 1\bigg \}\\&=\sup \bigg \{\left\langle \mathrm {D}_{\mathrm {rad}}u,\varphi _1\right\rangle + \left\langle \mathrm {D}_{\mathrm {orth}}u,\varphi _2\right\rangle \text { s.t. }\\&\qquad \qquad ~\varphi _i\in C^{\infty }_c(A),~\left\| \varphi _1^2+\varphi _2^2\right\| _{\infty }\le 1\bigg \}\,. \end{aligned} \end{aligned}$$

Hence, for \(\varphi _i\in C^{\infty }_c(A)\) such that \(\left\| \varphi _1^2+\varphi _2^2\right\| _{\infty }\le 1\) we have:

$$\begin{aligned} \int _{A}1\,\mathrm{d}|\mathrm {D}u|\ge \int _{A}(g_{\mathrm {rad}}\,\varphi _1+g_{\mathrm {orth}}\,\varphi _2)\,d|\mathrm {D}u|\,. \end{aligned}$$

If we had \(g_{\mathrm {rad}}^2+g_{\mathrm {orth}}^2> 1\) on a set of nonzero measure \(|\mathrm {D}u|\), we would have a contradiction. \(\square \)

We can now prove Proposition 17. Indeed, since \(\{0\}\) is \(\mathcal {H}^1\)-negligible, we have that

$$\begin{aligned} |\mathrm {D}u|(\{0\})=|\mathrm {D}\tilde{u}|(\{0\})=0\,, \end{aligned}$$

and moreover

$$\begin{aligned} |\mathrm {D}\tilde{u}|(\mathbb {R}^2\setminus \{0\})\le |\mathrm {D}_{\mathrm {rad}}u|(\mathbb {R}^2\setminus \{0\})\le |\mathrm {D}u|(\mathbb {R}^2\setminus \{0\})\,. \end{aligned}$$
(37)

The first equality comes from Lemma 7, while the second is easily obtained from the definition of \(\mathrm {D}_{\mathrm {rad}}\). Now, if we have \({|\mathrm {D}_{\mathrm {rad}}u|(U)=|\mathrm {D}u|(U)}\), then we get

$$\begin{aligned} \int _{U}g_{\mathrm {rad}}\,d|\mathrm {D}u|=\int _{U}\sqrt{g_{\mathrm {rad}}^2+g_{\mathrm {orth}}^2}\,\mathrm{d}|\mathrm {D}u|=\int _{U}d|\mathrm {D}u|\,. \end{aligned}$$

This yields \(g_{\mathrm {orth}}=0\) (and \(|g_{\mathrm {rad}}|=1\)) \(|\mathrm {D}u|\)-almost everywhere. Hence, \(\mathrm {D}_{\mathrm {orth}}u=0\).

Let us now show this implies that u is radial. If we define , then we have that the mapping given by \({h:(r,\theta )\mapsto (r\cos \theta ,r\sin \theta )}\) is a \(C^{\infty }\)-diffeomorphism from A to \(\mathbb {R}^2\setminus \left( \mathbb {R}_{-}\times \{0\}\right) \). Now, if \(\xi \in C_c^{\infty }(A)\), we have that \({\xi \circ h^{-1}\in C_c^{\infty }(h(A))}\) and

$$\begin{aligned} \begin{aligned} 0&=\left\langle \mathrm {D}_{\mathrm {orth}}u,\xi \circ h^{-1}\right\rangle \\&= \int _{\mathbb {R}^2}u\,\mathrm {div}\left( \left( \xi \circ h^{-1}\right) \frac{x^{\perp }}{\Vert x\Vert }\right) \\&=\int _{0}^{+\infty }\int _{-\pi }^{\pi }\left( u\circ h\right) (r,\theta )\,\left( \frac{1}{r}\frac{\partial }{\partial \theta } (\xi )(r,\theta )\right) r\,\mathrm{d}\theta \,\mathrm{d}r\,. \end{aligned} \end{aligned}$$

This means that \(\frac{\partial \theta }{\partial }(u\circ h)=0\) in the sense of distributions, and hence, that there existsFootnote 13 a mapping \({g:\,]0,+\infty [\rightarrow \mathbb {R}}\) such that for almost every \((r,\theta )\in A\), \((u\circ h)(r,\theta )=g(r)\). We finally get \({u(x)=g(\Vert x\Vert )}\) for almost every \(x\in h(A)\), which shows u is radial.

1.2 F.2 Lemmas Used in the Proof of Proposition 9

We take and keep the assumptions of Sect. 7.

Lemma 8

Let \(f:\mathbb {R}\rightarrow \mathbb {R}_+\) be square integrable, even and decreasing on \(\mathbb {R}_+\). Then, for every measurable set A such that \({|A|<+\infty }\) we have

$$\begin{aligned} \int _{A}f\le \int _{A^s}f\,, \end{aligned}$$

where . Moreover, equality holds if and only if \(|A\triangle A^s|=0\).

Proof

We have

$$\begin{aligned} \int _{A}f=\int _{0}^{+\infty }\left| \left\{ f\,\mathbf {1}_A\ge t\right\} \right| \mathrm{d}t=\int _{0}^{+\infty }\left| \left\{ f\ge t\right\} \cap A\right| \mathrm{d}t\,. \end{aligned}$$

For all \(t>0\), there exists \(\alpha \) such that \(\{f\ge t\}=[-\alpha ,\alpha ]\), so that we have

$$\begin{aligned} \begin{aligned} \left| \left\{ f\ge t\right\} \cap A\right|&=\left| [-\alpha ,\alpha ] \cap A\right| \le \text {min}(2\alpha ,|A|)\\ {}&=\left| [-\alpha ,\alpha ]\cap [-|A|/2,|A|/2]\right| \\ {}&=\left| \left\{ f\ge t\right\} \cap A^s\right| . \end{aligned} \end{aligned}$$

Hence,

$$\begin{aligned} \int _{A}f\le \int _{0}^{+\infty }\left| \left\{ f\ge t\right\} \cap A^S\right| \mathrm{d}t=\int _{A^s}f\,. \end{aligned}$$

Now, if \(|A\triangle A^s|>0\), then \(|A\setminus A^s|=|A^s\setminus A|>0\) and we have

$$\begin{aligned} \begin{aligned} \int _{A^s}f&=\!\int _{A\cap A^s}f+\int _{A^s\setminus A}f \!>\!\int _{A\cap A^s}f\!+\!f\left( \frac{|A|}{2}\right) \,|A^s\!\setminus \!A|\\&\ge \int _{A\cap A^s}f+\int _{A\setminus A^s}f=\int _{A}f\,, \end{aligned} \end{aligned}$$

which proves the second part of the result. \(\square \)

Lemma 9

Let \(E\subset \mathbb {R}^2\) be s.t. \(0<|E|<\infty \) and \({P(E)<\infty }\). Then, for any \(\nu \in \mathbb {S}^1\), denoting \(E^s_{\nu }\) the Steiner symmetrization of E with respect to the line through the origin directed by \(\nu \), we have

$$\begin{aligned} \frac{\int _{E^s_{\nu }}\eta }{P(E^s_{\nu })}\ge \frac{\int _{E}\eta }{P(E)}\,, \end{aligned}$$

with equality if and only if \(|E\triangle E^s_{\nu }|=0\).

Proof

From [27, theorem 14.4], we know that we have \({P(E_{\nu }^s)\le P(E)}\). We now perform a change of coordinates in order to have \(E^s_{\nu }=\left\{ (x_1,x_2)\in \mathbb {R}^2\,|\,|x_2|\le \frac{\mathcal {L}^1(E_{x_1})}{2}\right\} \) with

Now, we have

$$\begin{aligned} \begin{aligned} \int _{E}\eta&=\int _{-\infty }^{+\infty }\left( \int _{-\infty }^{+\infty } \eta (x_1,x_2)\,\mathbf {1}_{E}(x_1,x_2)\,\mathrm{d}x_2\right) \mathrm{d}x_1\\&=\int _{-\infty }^{+\infty }\left( \int _{E_{x_1}} \eta (x_1,\cdot )\right) \mathrm{d}x_1\,,\end{aligned} \end{aligned}$$

with \(E_{x_1}=\left\{ x_2\in \mathbb {R}\,|\, (x_1,x_2)\in E\right\} \). For almost every \({x_1\in \mathbb {R}}\), we have that \({E_{x_1}}\) is measurable, has finite measure, and that \({\eta (x_1,\cdot )}\) is nonnegative, square integrable, even and decreasing on \(\mathbb {R}_+\). We can hence apply Lemma 8 and get that

$$\begin{aligned} \int _{E}\eta \ge \int _{-\infty }^{+\infty }\left( \int _{\left( E_{x_1}\right) ^s} \eta (x_1,\cdot )\right) \mathrm{d}_{x_1}=\int _{E^s_{\nu }}\eta \,. \end{aligned}$$
(38)

Moreover, if \(|E\triangle E^s_{\nu }|>0\), then since

$$\begin{aligned} \begin{aligned}&|E\triangle E^s_{\nu }|\\&=\int _{0}^{+\infty }\left( \int _{0}^{+\infty } |\mathbf {1}_E(x_1,x_2)- \mathbf {1}_{E^s_{\nu }}(x_1,x_2)|\,\mathrm{d}x_2\right) \mathrm{d}x_1\\&=\int _{0}^{+\infty }\left( \int _{0}^{+\infty }\left| \mathbf {1}_{E_{x_1}}(x_2)- \mathbf {1}_{\left( E_{x_1}\right) ^s}(x_2)\right| \,\mathrm{d}x_2\right) \mathrm{d}x_1\\&=\int _{0}^{+\infty }\left| E_{x_1}\triangle \left( E_{x_1}^s\right) \right| \,\mathrm{d}x_1\,, \end{aligned} \end{aligned}$$

we get that \(\mathcal {L}^1\left( \left\{ x_1\in \mathbb {R}\,|\,\left| E_{x_1} \triangle \left( E_{x_1}\right) ^s\right|>0\right\} \right) >0\) and hence that (38) is strict. \(\square \)

Lemma 10

Under Assumption 1, the mapping

$$\begin{aligned} \mathcal {G}:R\mapsto \frac{1}{R}\int _{0}^R r\,\tilde{\varphi }(r)\,\mathrm{d}r \end{aligned}$$

has a unique maximizer.

Proof

Since \(\varphi \) (and hence \(\tilde{\varphi }\)) is continuous, we have that \(\mathcal {G}\) is \(C^1\) on \(R_+^*\) and

$$\begin{aligned} \mathcal {G}'(R)=\frac{R\,(R\,\tilde{\varphi }(R))-\int _{0}^R r\,\tilde{\varphi }(r)\,\mathrm{d}r}{R^2}\,. \end{aligned}$$

Now, an integration by part yields that for any continuously differentiable function \(h:]0,+\infty [\rightarrow \mathbb {R}\) and for any \(x>0\) we have

which shows \(H'(x)=x\,h'(x)\). This means the mappings

$$\begin{aligned}&R\mapsto R\,(R\,\tilde{\varphi }(R))\\&-\int _{0}^R r\,\tilde{\varphi }(r)\,\mathrm{d}r \text { and } R\mapsto f(R)=R\,\tilde{\varphi }(R) \end{aligned}$$

have the same variations. Under Assumption 1, it is then easy to show there exists \(R_0>0\) such that \({\mathcal {G}'(R_0)=0}\), \(\mathcal {G}'\) is positive on \(]0,R_0[\) and negative on \(]R_0,+\infty [\), hence the result. \(\square \)

1.3 F.3 Proof of Proposition 12

We define

so that in polar coordinates an equation of the boundary of a regular n-gon of radius R with a vertex at (0, 0) is given by \({r(\theta )=R_n(\theta )}\). Under Assumption 1, we have, for all \(R>0\):

$$\begin{aligned} \begin{aligned}&2\pi R\,\frac{\tan \left( \pi /n\right) }{\pi /n}\left| \mathcal {G}(R)- \mathcal {G}_n(R)\right| \\&\quad =\bigg |\frac{\tan \left( \pi /n\right) }{\pi /n}\,\int _{0}^{2\pi }\int _{0}^R r\tilde{\varphi }(r)\,\mathrm{d}r\, \mathrm{d}\theta \\&\qquad \qquad \quad -\int _{0}^{2\pi }\int _{0}^{R_n(\theta )} r\tilde{\varphi }(r)\,\mathrm{d}r\, \mathrm{d}\theta \bigg |\\&\quad =\bigg |\int _{0}^{2\pi }\int _{R_n(\theta )}^R r\tilde{\varphi }(r)\,\mathrm{d}r\, \mathrm{d}\theta \\&\qquad -\left( 1-\frac{\tan \left( \pi /n\right) }{\pi /n}\right) \int _{0}^{2\pi }\int _{0}^{R} r\tilde{\varphi }(r)\,\mathrm{d}r\, \mathrm{d}\theta \bigg |\\&\quad \le \bigg [2\pi \,\underset{\theta \in [0,2\pi ]}{\sup }\left| R- R_n(\theta )\right| \Vert f\Vert _{\infty }\\&\qquad +\left( 1-\frac{\tan \left( \pi /n\right) }{\pi /n}\right) \,2\pi R\,\Vert f\Vert _{\infty }\bigg ]\\&\quad \le \Vert f\Vert _{\infty }\left[ (1- \cos \left( \pi /n\right) ) +\left( 1-\frac{\tan \left( \pi /n\right) }{\pi /n}\right) \right] . \end{aligned} \end{aligned}$$

We hence obtain that \(\left| \mathcal {G}(R)-\mathcal {G}_n(R)\right| _{\infty } =O\left( \frac{1}{n^2}\right) \).

Now, assuming f is of class \(C^2\) and \(f''(\rho _0)<0\) we want to prove that for n large enough, \(\mathcal {G}_n\) has a unique maximizer \(R^*_n\) and \({|R^*_n-R^*|=O\left( \frac{1}{n}\right) }\). Denoting , we have:

$$\begin{aligned} \begin{aligned} \mathcal {G}_n(R)&=\frac{1}{2\pi R\,\frac{\tan \left( \pi /n\right) }{\pi /n}} \int _{0}^{2\pi }\int _{0}^{R_n(\theta )}r\tilde{\varphi }(r)\,\mathrm{d}r\,\mathrm{d}\theta \\&=\frac{1}{2\pi R\,\frac{\tan \left( \pi /n\right) }{\pi /n}}~n\int _{0}^{2\pi /n} \int _{0}^{R\frac{\cos \left( \pi /n\right) }{\cos \left( \theta -\pi / n\right) }}r\tilde{\varphi }(r)\,\mathrm{d}r\,\mathrm{d}\theta \\&=\frac{\pi /n}{R\,\tan \left( \pi /n\right) }~\int _{0}^{1} \int _{0}^{R\,\alpha _n(s)}r\tilde{\varphi }(r)\,\mathrm{d}r\,\mathrm{d}s\\&=\frac{\pi /n}{\tan \left( \pi /n\right) }\frac{1}{R}\int _{0}^{R} r\left[ \int _{0}^{1}\alpha _n(s)^2\,\tilde{\varphi }(r\,\alpha _n(s))\,\mathrm{d}s\right] \mathrm{d}r\,. \end{aligned} \end{aligned}$$

Considering Lemma 10 and defining

$$\begin{aligned} f_n:r\mapsto r\left[ \int _{0}^{1}\alpha _n(s)^2\,\tilde{\varphi }(r\,\alpha _n(s))\,\mathrm{d}s\right] , \end{aligned}$$

we see that showing \(f_n'\) is positive on \(]0,\rho _1[\) and negative on \({]\rho _1,+\infty [}\) for some \(\rho _1\) is sufficient to prove \(\mathcal {G}_n\) has a unique maximizer. Now, we have

$$\begin{aligned} f_n'(r)=\int _{0}^1 \alpha _n(s)^2\left( \tilde{\varphi }(r\,\alpha _n(s))+r\, \alpha _n(s)\,\tilde{\varphi }'(r\,\alpha _n(s))\right) \mathrm{d}s\,. \end{aligned}$$

The image of [0, 1] by \(s\mapsto r\,\alpha _n(s)\) is \([r\cos \left( \pi /n\right) ,r]\). Since the mapping \(r\mapsto \tilde{\varphi }(r)+r\tilde{\varphi }'(r)=(r\tilde{\varphi })'(r)\) is positive on \({]0,\rho _0[}\) and negative on \(]\rho _0,+\infty [\), we get that \(f_n'\) is positive on \({]0,\rho _0[}\) and negative on \({]\rho _0/\cos \left( \pi /n\right) ,+\infty [}\) and it hence remains to investigate its sign on \({[\rho _0,\rho _0/\cos \left( \pi /n\right) ]}\). But since f is of class \(C^2\) and  \({f''(\rho _0)<0}\) there exists \(\epsilon >0\) s.t. \({f''(r)<0}\) on \({]\rho _0-\epsilon ,\rho _0+\epsilon [}\). For n large enough, we hence have

$$\begin{aligned} {[}\rho _0\cos \left( \pi /n\right) ,\rho _0/\cos \left( \pi /n\right) ] \subset \,]\rho _0-\epsilon ,\rho _0+\epsilon [\,, \end{aligned}$$

which implies that

$$\begin{aligned} \forall r\in [\rho _0,\rho _0/\cos \left( \pi /n\right) ],~ r\,\alpha _n(s)\in \,]\rho _0-\epsilon ,\rho _0+\epsilon [\,, \end{aligned}$$

and hence \(f_n''(r)<0\). This finally shows there exists \(\rho _1\) such that \(f_n'\) is positive on \(]0,\rho _1[\) and negative on \(]\rho _1,+\infty [\), and the result follows as in the proof of Lemma 10.

Now, \(R^*\) and \(R_n^*\) and are, respectively, the unique solutions of \(F(0,R)=0\) and \(F(\pi /n,R)=0\) with

One can then show \(\frac{\partial }{\partial R}F(0,R)=0\) if and only if \(f_0'(R)=0\), i.e. if and only if \(R=\rho _0\). But from the proof of Lemma 10 and the above, it is easy to see neither \(R^*\) nor \(R_n^*\) equals \(\rho _0\). We can hence apply the implicit function theorem to finally get that \(|R^*-R_n^*|=O\left( \frac{1}{n^2}\right) \).

1.4 F.4 Proof of Proposition 13

1.4.1 F.4.1 Triangles

Let T be a triangle. Up to a rotation of the axis, we can assume that there exist \({a<b}\) and two affine functions uv such that \(v\ge u\) and \(u(a)=v(a)\) with

$$\begin{aligned} T=\{(x,y)\in \mathbb {R}^2\,\big |\, x\in [a,b],~u(x)\le y\le v(x)\}\,. \end{aligned}$$

The Steiner symmetrization \(T_s\) of T with respect to the line through the origin perpendicular to the side \(\{b\}\times [u(b),v(b)]\) is hence obtained by replacing u and v in the definition of T by \((u-v)/2\) and \((v-u)/2\). For all \(\theta \in [0,1]\), we define

and

so that \(T_{1/2}=T_s\). Let us now show that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\theta }\mathcal {J}\,(T_{\theta })\big |_{\theta =0}\le 0\,, \end{aligned}$$

with equality if and only if T is symmetric with respect to the symmetrization line.

Weighted area term: first, we have:

$$\begin{aligned} \int _{T_{\theta }}\eta =\int _{a}^b \left( \int _{u_{\theta }(x)}^{v_{\theta }(x)} \eta \left( \sqrt{x^2+y^2}\right) \mathrm{d}y\right) \mathrm{d}x\,. \end{aligned}$$

Hence,

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}\theta }\int _{T_{\theta }}\eta \bigg |_{\theta =0}=\\&-\int _{a}^b(u+v)(x)\,(g_x(|v|(x))-g_x(|u|(x)))\,\mathrm{d}x\,, \end{aligned}$$

with . Our assumptions on \(\eta \) ensure that \({p\mapsto g_x(p)}\) is decreasing, so that \(g_x(|v|(x))-g_x(|u|(x))\) and \(|u|(x)-|v|(x)\) have the same sign. But since

$$\begin{aligned} -(u(x)+v(x)) ~\text { and }~ -(|u|(x)-|v|(x)) \end{aligned}$$

also have the same sign, we have that

$$\begin{aligned} -(u+v)(x)\,(g_x(|v|(x))-g_x(|u|(x)))<0\,, \end{aligned}$$

unless \(u(x)=v(x)\) or \(u(x)=-v(x)\). Since u and v are affine and \(u(a)=v(a)\), the first equality cannot hold for any \({x\in ]a,b[}\) (otherwise, we would have \(u=v\) on [ab] and T would be flat). Moreover, \({u(x)=-v(x)}\) almost everywhere on [ab] if and only if \(T=T_s\). Hence, \(\frac{\mathrm{d}}{\mathrm{d}\theta }\int _{T_{\theta }}\eta \big |_{\theta =0}\le 0\) with equality if and only if \(T=T_s\).

Perimeter term: now, the perimeter of \(T_{\theta }\) is given by

$$\begin{aligned} \begin{aligned} P(T_{\theta })&=\int _{a}^b \sqrt{1+|\nabla u_{\theta }|^2}+\int _{a}^b \sqrt{1+|\nabla v_{\theta }|^2}+v_{\theta }(b)-u_{\theta }(b)\\&=(b-a)\left( f(\nabla u_{\theta })+f(\nabla v_{\theta })\right) +(v(b)-u(b))\,, \end{aligned} \end{aligned}$$

with , this last function being strictly convex. Now, since

$$\begin{aligned} \left\{ \begin{aligned} \nabla u_{\theta }&=\nabla u-\theta (\nabla u+\nabla v)\,,\\ \nabla v_{\theta }&=\nabla v-\theta (\nabla u+\nabla v)\,, \end{aligned}\right. \end{aligned}$$

we get

$$\begin{aligned} \begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}\theta }P(T_{\theta })\bigg |_{\theta =0}=(b-a) \left[ \nabla f(\nabla u)+\nabla f(\nabla v)\right] \cdot \left[ -(\nabla u+\nabla v)\right] \\&\qquad \qquad ~=-(b-a)\left[ \nabla f(\nabla u)- \nabla f(-\nabla v)\right] \cdot \left[ \nabla u-(-\nabla v)\right] , \end{aligned} \end{aligned}$$

and the strict convexity of f hence shows

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\theta }P(T_{\theta })\bigg |_{\theta =0}\le 0\,, \end{aligned}$$

with equality if and only if \(\nabla u=-\nabla v\), which means, up to a translation, that T is equal to \(T_s\).

Applying the above arguments to all three sides finally yields the result.

1.4.2 F.4.2 Quadrilaterals

Let Q be a simple quadrilateral. Up to a rotation of the axis, we can assume that there exist \({a<b<c}\) and four affine functions \(u_1,v_1,u_2,v_2\) such that

$$\begin{aligned} \left\{ \begin{aligned} v_1\ge u_1,&~v_2\ge u_2\,,\\ u_1(a)=v_1(a),&~u_2(c)=v_2(c)\,,\\ u_1(b)=u_2(b),&~v_1(b)=v_2(b)\,, \end{aligned}\right. \end{aligned}$$

with \(Q=T_1\cup T_2\) and

For all \(\theta \in [0,1]\) and \(i\in \{1,2\}\), we define

and \(Q_{\theta }=T_{1,\theta }\cup T_{2,\theta }\) with

$$\begin{aligned} T_{i,\theta }=\left\{ (x,y)\in \mathbb {R}^2\,\big |\, x\in [a,b],~u_{i,\theta }(x)\le y\le v_{i,\theta }(x)\right\} , \end{aligned}$$

so that the Steiner symmetrization \(Q^s\) of Q with respect to the ligne through the origin perpendicular to the diagonal \({\{b\}\times [u_1(b),v_1(b)]}\) satisfies \(Q_{1/2}=Q^s\).

Weighted area term: the fact \(\frac{\mathrm{d}}{\mathrm{d}\theta }\int _{Q_{\theta }}\eta \big |_{\theta =0}\le 0\) with equality if and only if \(Q=Q^s\) can easily be deduced from the case of triangles using the fact that \(\int _{Q_{\theta }}\eta =\int _{T_{1,\theta }}\eta +\int _{T_{2,\theta }}\eta \).

Perimeter term: now, the perimeter of \(Q_{\theta }\) is given by:

$$\begin{aligned} \begin{aligned} P(Q_{\theta })&=\int _{a}^b \sqrt{1+|\nabla u_{1,\theta }|^2}+\int _{a}^b \sqrt{1+|\nabla v_{1,\theta }|^2}\\&+\int _{b}^c \sqrt{1+|\nabla u_{2,\theta }|^2}+\int _{b}^c \sqrt{1+|\nabla v_{2,\theta }|^2}\\&=(b-a)\left( f(\nabla u_{1,\theta })+f(\nabla v_{1,\theta })\right) \\ {}&+(c-b)\left( f(\nabla u_{2,\theta })+f(\nabla v_{2,\theta })\right) \end{aligned} \end{aligned}$$

with as before. We then get

$$\begin{aligned} \begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}\theta }P(Q_{\theta })\bigg |_{\theta =0}\\ =&-(b-a)\left[ \nabla f(\nabla u_1)-\nabla f(-\nabla v_1)\right] \cdot \left[ \nabla u_1-(-\nabla v_1)\right] \\&-(c-b)\left[ \nabla f(\nabla u_2)-\nabla f(-\nabla v_2)\right] \cdot \left[ \nabla u_2-(-\nabla v_2)\right] , \end{aligned} \end{aligned}$$

and the strict convexity of f hence shows

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\theta }P(Q_{\theta })\bigg |_{\theta =0}\le 0\,, \end{aligned}$$

with equality if and only if \(\nabla u_1=-\nabla v_1\) and \(\nabla u_2=-\nabla v_2\), which means, up to a translation, that Q is equal to \(Q^s\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Castro, Y., Duval, V. & Petit, R. Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems. J Math Imaging Vis 65, 53–81 (2023). https://doi.org/10.1007/s10851-022-01115-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10851-022-01115-w

Keywords

Profiles

  1. Yohann De Castro
  2. Vincent Duval