Skip to main content

Peripheral Nervous System Responses to Food Stimuli: Analysis Using Data Science Approaches

  • Chapter
  • First Online:
Basic Protocols on Emotions, Senses, and Foods

Abstract

In the field of food, as in other fields, the measurement of emotional responses to food and their sensory properties is a major challenge. In the present protocol, we propose a step-by-step procedure that allows a physiological description of odors, aromas, and their hedonic properties. The method rooted in subgroup discovery belongs to the field of data science and especially data mining. It is still little used in the field of food and is based on a descriptive modeling of emotions on the basis of human physiological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 141.69
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 217.99
Price includes VAT (Netherlands)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Wijk RA, Kooijman V, Verhoeven RHG et al (2012) Autonomic nervous system responses on and facial expressions to the sight, smell, and taste of liked and disliked foods. Food Qual Prefer 26:196–203

    Article  Google Scholar 

  2. De Wijk RA, Kaneko D, Dijksterhuis GB et al (2019) Food perception and emotion measured over time in-lab and in-home. Food Qual Prefer 75:170–178

    Article  Google Scholar 

  3. Verastegui-Tena L, Schulte-Holierhoek A, van Trijp H et al (2017) Beyond expectations: the responses of the autonomic nervous system to visual food cues. Physiol Behav 179:478–486

    Article  CAS  Google Scholar 

  4. He, W. (2016). Beyond liking: emotional and physiological responses to food stimuli (Doctoral dissertation, Wageningen University and Research)

    Google Scholar 

  5. Kuoppa P, Pulkkinen K, Tarvainen MP et al (2016) Psychophysiological responses to positive and negative food and nonfood visual stimuli. J Neurosci Psychol Econ 9:78–88

    Article  Google Scholar 

  6. Nardelli M, Lanata A, di Francesco F et al (2020) Investigating complex cardiovascular dynamics during hedonic olfactory elicitation. In: 2020 11th conference of the European Study Group on Cardiovascular Oscillations (ESGCO), pp 1–2

    Google Scholar 

  7. Walsh AM, Duncan SE, Bell MA et al (2017) Integrating implicit and explicit emotional assessment of food quality and safety concerns. Food Qual Prefer 56:212–224

    Article  Google Scholar 

  8. Rousmans S, Robin O, Dittmar A et al (2000) Autonomic nervous system responses associated with primary tastes. Chem Senses 25:709–718

    Article  CAS  Google Scholar 

  9. He W, Boesveldt S, de Graaf C et al (2014) Dynamics of autonomic nervous system responses and facial expressions to odors. Front Psychol 5:110

    Article  Google Scholar 

  10. Muroni P, Crnjar R, Tomassini Barbarossa I (2011) Emotional responses to pleasant and unpleasant Oral flavour stimuli. Chem Percept 4:65

    Article  Google Scholar 

  11. Leterme A, Brun L, Dittmar A et al (2008) Autonomic nervous system responses to sweet taste: evidence for habituation rather than pleasure. Physiol Behav 93:994–999

    Article  CAS  Google Scholar 

  12. Moranges M, Rouby C, Plantevit M et al (2021) Explicit and implicit measures of emotions: data-science might help to account for data complexity and heterogeneity. Food Qual Prefer 92:104181

    Article  Google Scholar 

  13. Moranges M, Plantevit M, Bensafi M (2022) Using subgroup discovery to relate odor pleasantness and intensity to peripheral nervous system reactions. IEEE Trans Affect Comput:1. https://doi.org/10.1109/TAFFC.2022.3173403

  14. Licon CC, Manesse C, Dantec M et al (2018) Pleasantness and trigeminal sensations as salient dimensions in organizing the semantic and physiological spaces of odors. Sci Rep 8:8444

    Article  CAS  Google Scholar 

  15. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  16. Lemmerich F, Becker M (2019) Pysubgroup: easy-to-use subgroup discovery in Python. In: Brefeld U, Curry E, Daly E et al (eds) Machine learning and knowledge discovery in databases. Springer International Publishing, Cham, pp 658–662

    Chapter  Google Scholar 

  17. Macqueen J (1967) Some methods for classification and analysis of multivariate observations. 5th Berkeley Symp. Math. Statist. Probability, pp 281–297

    Google Scholar 

  18. Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Komorowski J, Zytkow J (eds) Principles of data mining and knowledge discovery. Springer, Berlin, Heidelberg, pp 78–87

    Chapter  Google Scholar 

  19. Bosc G, Golebiowski J, Bensafi M et al (2016) Local subgroup discovery for eliciting and understanding new structure-odor relationships. In: Calders T, Ceci M, Malerba D (eds) Discovery science. Springer International Publishing, Cham, pp 19–34

    Chapter  Google Scholar 

  20. Moranges M, Plantevit M, Fournel A et al (2018) Exceptional attributed subgraph mining to understand the olfactory percept. In: Soldatova L, Vanschoren J, Papadopoulos G et al (eds) Discovery science. Springer International Publishing, Cham, pp 276–291

    Chapter  Google Scholar 

  21. Licon CC, Bosc G, Sabri M et al (2019) Chemical features mining provides new descriptive structure-odor relationships. PLoS Comput Biol 15:e1006945

    Article  Google Scholar 

  22. Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Advances in neural information processing systems. Curran Associates, Inc. Long Beach, California, USA

    Google Scholar 

  23. Frank E, Hall M, Holmes G et al (2010) Weka-a machine learning workbench for data mining. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer US, Boston, pp 1269–1277

    Google Scholar 

  24. Schubert E, Zimek A (2019) ELKI: a large open-source library for data analysis – ELKI Release 0.7.5 “Heidelberg,” http://arxiv.org/abs/1902.03616

  25. Berthold MR, Cebron N, Dill F et al (2009) KNIME – the Konstanz information miner: version 2.0 and beyond. SIGKDD Explor Newsl 11:26–31

    Article  Google Scholar 

  26. Demsˇar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in Python. 5. J Mach Learn Res 14:2349–2353

    Google Scholar 

  27. Meeng M, Knobbe A (2011) Flexible enrichment with cortana – software demo. 3

    Google Scholar 

  28. Atzmueller M, Lemmerich F (2012) VIKAMINE – open-source subgroup discovery, pattern mining, and analytics. In: Flach PA, De Bie T, Cristianini N (eds) Machine learning and knowledge discovery in databases. Springer, Berlin, Heidelberg, pp 842–845

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moranges, M., Plantevit, M., Bensafi, M. (2023). Peripheral Nervous System Responses to Food Stimuli: Analysis Using Data Science Approaches. In: Bensafi, M. (eds) Basic Protocols on Emotions, Senses, and Foods. Methods and Protocols in Food Science . Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2934-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2934-5_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-2933-8

  • Online ISBN: 978-1-0716-2934-5

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics

Profiles

  1. Maelle Moranges