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Abstract

Group communication protocols greatly simplify the de-
sign of fault-tolerant distributed systems. Most of those pro-
tocols focus on node redundancy rather than on network re-
dundancy. The Totem Redundant Ring Protocol allows the
use of multiple redundant local-area networks. The partial
or total failure of a network remains transparent to the ap-
plication processes. The distributed system remains opera-
tional while an administrator reacts to an alarm raised by
the Totem Redundant Ring Protocol. The user can choose
between active, passive and active-passive replication of the
network.

1. Introduction

Group communication protocols [1, 2, 4, 12] must pro-
vide reliable delivery, ensured either by an underlying re-
liable protocol or by the group communication protocol it-
self. Properties such as virtual synchrony [4] and extended
virtual synchrony [16] ease the maintenance of consistency
of replicated data. Systems that are connected by a wide-
area network [13, 20, 22] have a good chance of remaining
operational if parts of the network fail. Local-area networks
(LANSs), on the other hand, often employ a single switch or
a hub. If that component fails, no node can communicate
with any other node and the system partitions into single-
tons. Systems that follow the primary component model [4]
shut down all nodes, while other systems keep the nodes up,
even though they cannot do useful work when the commu-
nication links are severed.

To allow a distributed system to tolerate network faults,
the network itself must be replicated. Although replicated
wide-area networks are not practical, LANs can be repli-
cated cheaply. However, the mere presence of a redundant
network does not overcome network faults. A special pro-
tocol must be employed to coordinate redundant networks.
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Such a protocol can be used in distributed applica-
tions with high availability requirements, such as financial,
avionic, or military applications, that are based on clusters
of computers, instead of dedicated hardware. The range of
applications that can benefit from a redundant network pro-
tocol extends from real-time radar image analysis to back-
end servers for financial applications. Other applications
include more general fault tolerance infrastructures, such as
AQUuA [8] or Eternal [18], which build on a group commu-
nication protocol.

To enable the use of redundant networks in a fault-
tolerant distributed system, we have developed the Totem
Redundant Ring Protocol (Totem RRP), which is based on
the Totem Single Ring Protocol (Totem SRP) [2]. The
Totem SRP is a highly efficient group communication pro-
tocol for Ethernet-based LANs. Totem imposes a logical
token-passing ring on the network. The token is used to
achieve reliable delivery of messages, causal and total mes-
sage ordering, flow control and fault detection. The Totem
SRP also provides group membership services.

The Totem RRP provides the same services to applica-
tion processes as the Totem SRP. However, the Totem RRP
utilizes multiple networks to achieve resilience against par-
tial or total network faults. Network faults remain trans-
parent to the application processes, and the system remains
operational as long as a single network is operational.

As shown in Section 8, the Totem RRP increases both
reliability and throughput. This characteristic is important
for building fault-tolerant distributed systems that handle
heavy message loads, such as telecommunication switches
and distributed real-time image processing systems, or reli-
able network storage devices.

2. The Totem Single Ring Protocol

The Totem Single Ring Protocol (SRP) is a group com-
munication protocol designed for Ethernet-based LANSs.
The Totem SRP uses the native Ethernet broadcast service
to broadcast messages efficiently. All data is sent in the
form of packets using UDP.



Reliable message delivery and message ordering is
achieved by imposing a logical token-passing ring on all
participating nodes. A node is allowed to broadcast a mes-
sage only if it holds the token. After sending the messages
that have accumulated in its send queue, a node passes the
token to the next node on the ring. For performance reasons,
tokens are not broadcast. If the traffic is light, the token ro-
tates very quickly. Unicasting the token implies that a node
receives the token only once per rotation.

The strict sending schedule allows Totem to utilize an
Ethernet far beyond the usual point of saturation. The re-
quirement that only one node at a time can transmit data
prevents collisions on the medium. With Totem, a through-
put of more than 9,000 1 Kbyte msgs/sec has been achieved
on a 100Mbit/sec Ethernet, which corresponds to a utiliza-
tion of almost 90% (see Section 8).

When the application wishes to send a message, it passes
the message to Totem, which stores the message in its send
queue. The next time a node receives the token, it dequeues
the messages from its send queue and broadcasts them in
the order in which they were enqueued. Totem includes in
each message header a unique sequence number. The to-
ken carries the sequence number seq of the last message
broadcast on the ring. For each message that it broadcasts,
a node increments seq and puts it in the message header.
After broadcasting its messages, the node copies seq into
the token and passes the token to the next node on the ring.
The sequence number attached to each message imposes a
global order on messages. Each node delivers the messages
in the order of the sequence numbers included in the head-
ers.

If a node misses a message, it detects a gap in the se-
quence numbers when it receives the next message or the
token. If the gap still exists when the node receives the to-
ken, it puts a retransmission request into the token. The next
token holder checks if it has a copy of the requested mes-
sages. If it does, it broadcasts those messages and removes
the request from the token. Otherwise, it leaves the request
in the token and forwards the token to the next token holder.

If two nodes A and B are missing the same message m,
only a single retransmission will occur. Thus, if a node C
retransmits m because it received A’s request, B will re-
ceive m as well. As explained in Sections 5 and 6, this
behavior simplifies the design of the Totem RRP.

In addition to ensuring reliable delivery, the token also
serves as a fault detector. If a node has not received the
token for a certain period of time, it starts the membership
protocol. To avoid triggering the membership protocol be-
cause of token loss, a node periodically resends a copy of
the last token it sent, as long as it has not received a mes-
sage with a sequence number greater than that in the token.
The reception of such a message indicates that the token has
been received successfully by the next node on the ring. If a

node receives a token with the same sequence number as the
previous one, it recognizes that the token was retransmitted
and ignores the token.!

3. Fault Model

The Totem protocol is designed to tolerate omission
faults and node faults. To tolerate network faults, the
distributed system must employ redundant communication
channels. By connecting nodes through multiple networks,
communication can be maintained as long as one network
remains operational.

Throughout the rest of this paper, we assume N to be the
number of redundant networks. We refer to the first network
as n’, the second network as n'’, and so on. Messages (to-
kens) are denoted as mg (t5), where s is the sequence num-
ber of the message (token). To distinguish different copies
of a message (token) that are sent over different networks,
we mark them as follows: m/ (t.) is the copy of m, (¢5)
sent via n’, m! (t!) is sent via n”, etc.

In the case of redundant networks, the types of faults
tolerated are:

e A node A is unable to send any data via a particular
network n”.

e A node A is unable to receive any data via a particular
network n®.

e A network n” is unable to deliver any data from some
subset of nodes to some other subset of nodes. These
sets can overlap, and can even comprise the entire set
of nodes.

Such types of faults do not result in membership changes
because the affected nodes are still able to communicate
through another network. Moreover, the network fault is
hidden from the user application. However, the system can
handle only so many network faults before it fails. Conse-
quently, the Totem RRP monitors the behavior of the net-
works and raises an alarm if the network behavior deviates
from normal behavior.

If the Totem RRP detects a network fault, it marks the
network as faulty. The Totem network monitor, which oper-
ates entirely locally, is based on receiving messages and to-
kens; it does not send messages or probe connections. Once
a monitor detects a network fault, the Totem RRP marks the
network as failed and stops sending messages over it. At
the same time, the Totem RRP issues a fault report to the
user application process that is connected to it. Although

UIf the token completes an entire rotation without any message being
broadcast, the token sequence number remains unchanged. To prevent a
node from regarding the new token as an identical copy of a token that it
has seen previously, the token contains a rotation_counter, which the ring
leader increments every time the token completes one rotation.



a node does not send via networks it has marked as faulty,
it does accept messages that it receives via those networks,
because the network fault might not yet have been detected
by the network monitors of all other nodes. Consequently,
those nodes keep sending messages and tokens via those
networks.

A node’s refusal to send via a particular network is inter-
preted as a fault by the monitors of the other nodes. If those
monitors have not yet done so, they now mark the network
as faulty and issue a fault report. The order in which the
fault reports are issued and the content of those reports aids
the user in diagnosing of the problem.

4. Replication Styles

For the Totem Redundant Ring Protocol, we have imple-
mented three different styles of network replication:

o Active replication: In active replication, all messages
and tokens are sent over all networks at the same
time. All data is received multiple times. The band-
width consumption increases linearly with the number
N of networks. The maximum throughput equals the
throughput of the slowest network. The system is able
to mask the loss of a message on up to N-1 networks
without any message retransmission delay.

e Passive replication: In passive replication, messages
are sent alternately over one of the available net-
works. The bandwidth consumption equals the band-
width consumption of an unreplicated system. In the
fault-free case, the maximum throughput equals the
sum of the throughputs of all networks. If one of the
networks fails, the maximum throughputis reduced. If
a message is lost, Totem must wait until the message
has been retransmitted.

e Active-passive replication: This replication style is
a mixture of active replication and passive replication.
Every message or token is sent over K networks simul-
taneously (1 < K < N). The bandwidth consumption
increases K -fold. The system is able to mask the loss
of a message on up to K-1 networks without any mes-
sage retransmission delay.

5. Active Replication

Using active replication, the Totem RRP sends every
message over all N networks. For optimal performance,
all networks should exhibit similar throughput and similar
latency. The Totem RRP sends different copies of messages
(tokens) in the same order: m/, (t}) is sent first, m/ (t7) is
sent second, and so on.

In the fault-free case, UDP over IP over Ethernet pre-
serves the sending order of messages if they are sent via the
same network to the same recipient.> The FIFO behavior is
violated only when a message is dropped. However, due to
the asynchronous nature of the system, nodes may receive
messages in an arbitrary order if the messages are sent via
different Ethernets.

Assume that a sender sends a message m via multiple
networks n?, 1 < ¢ < N. Using active replication, the
following inequalities hold for the timing of events for any
z,y withz < y:

tsend (mx) < tsend (my) (1)
tsend (mz) < trecv (mz) (2)
tsend(my) < trecw (my) 3)

From inequalities (1) and (3), it follows that

tsend(mw) <trecw (my) 4

No relation between t,.cc, (m®) and ,.., (mY) exists.
Considering the relationship between a pair of messages,
the following additional inequalities hold:

tsend(mf) < tsend(m%’) < tsend(mg) < tsend(mg) (5)
trecw (mf) <trecy (mﬁ) ©)
trecy (m%) < trecv (mg) (7)

Again, no relationship between tpecp(mf) and
trecy(my), or between treey(my) and treep(ms) ex-
ists. Obviously, these inequalities also hold if we replace
any of the messages m with a token ¢. For any pair of
messages (tokens) and any pair of networks, six possible
scenarios arise, as shown in Figure 1.

When using active replication, six additional require-
ments for the Totem RRP must be met in addition to the
Totem SRP requirements:

Al: Each message must be delivered only once to the ap-
plication. All duplicate messages must be suppressed.
To keep the message delivery latency low, the Totem
RRP must attempt to deliver a message when it is first
received.

A2: A node can request a retransmission only if it has not
received a message over any network. None of the sce-
narios shown in Figure 1 can trigger a retransmission
for either Totem messages or tokens.

2This does not hold for wide-area IP networks because IP might choose
different routes for different packets. Moreover, it does not hold for Eth-
ernets if the messages are sent to different recipients via UDP. The sender
s might send a packet m2 to node r» before it sends a packet m1 to node
r1, even if m is passed to the UDP stack before ma2. A possible reason
is that s might still be waiting for the ARP packet that resolves r1’s MAC
address.
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Figure 1. Timing of sending (receiving) mes-
sages sent via two networks.

A3: The networks must remain synchronized. If the net-
works are loaded differently, or if the networks have
different speeds, the slower network must not fall be-
hind.

A4: The Totem RRP must make progress even if a message
or token is lost, or if a network fails.

AS: The Totem RRP must eventually detect a permanent
failure of a network.

A6: The Totem RRP network fault detector must not be
triggered by sporadic messages or token loss.

The algorithm given in Figure 2 transforms the Totem
SRP into the Totem RRP for active replication. The algo-
rithm forms a layer that resides between the Totem SRP and
the networks. Each message and token is sent on all NV net-
works.

When a message is received, it is passed directly to the
Totem SRP. Identical copies of messages are destroyed by
the Totem SRP. Because retransmitted messages are iden-
tical to the original messages, the Totem SRP implements
a filter based on sequence numbers to eliminate duplicate
messages. This mechanism also filters duplicate messages
from different networks and, therefore, satisfies Require-
ment Al.

Unlike messages, tokens are passed to the Totem SRP
only if they have been received via all non-faulty networks.
This condition is necessary to satisfy Requirements A2 and
A3. The Totem SRP tags retransmission requests to the
token; thus, a node cannot request the retransmission of a
message until it holds the token. Because of (6) and (7), all
copies of messages that have been sent before a token has
been sent, are received via all networks before all copies of
the token are received. This means that the Totem SRP has
received all outstanding messages before it processes the to-
ken and is able to issue a retransmission request (Require-
ment A2). Waiting for all copies of a token also prevents
the networks from losing synchrony (Requirement A3), be-
cause the token is passed to the Totem SRP after the last
copy of the token has been received.

The algorithm for active replication can cope with the
loss of multiple copies of a message. If all copies are lost,
the Totem SRP retransmission protocol resolves the prob-
lem. To guarantee progress when a token is dropped by
some of the networks, or when some networks fail, the
Totem RRP starts a token timer every time a new token is re-
ceived over any of the networks. The token is passed to the
Totem SRP when the token timer expires. All later copies
of the token are ignored. This strategy implements Require-
ment A4. Note that, once the timer is running, it will never
be restarted because a new token can arrive only after the
current token has completed another rotation.

To monitor the health of the networks, the Totem RRP
maintains a problem_counter for each network. If a to-
ken timer expires, the Totem RRP increments the prob-
lem_counter for all networks that did not deliver the token.
If the problem_counter of a network exceeds a threshold,
the Totem RRP declares the network to be faulty. This
mechanism satisfies Requirement A5. To prevent the proto-
col from declaring an operational network as faulty simply
because a number of token losses accumulated over time,
a network’s problem_counter is decremented periodically
(not shown Figure 2.). This mechanism ensures that Re-
quirement A6 is satisfied.

6. Passive Replication

Using passive replication, each node that runs the Totem
RRP establishes connections over all of its networks. It
sends a single copy of each message, and each token, over



boolean faulty[N] = false
boolean recvLastToken[N] = false

int problemCounter[N] =0

token lastToken ={0,0,...}

sendMsg( m )
for(i=1;i<N;i++)
if ( faulty[i] = false )
broadcast m via network n’

sendToken( ¢ )
for(i=1;i < N;i++)
if ( faulty[N] = false )
send t to next token holder via network n’

recvMsg( m, n® )
deliver m to Totem SRP

recvToken( ¢, n® )
if (t.seq > lastT oken.seq)
lastToken =t
for(i=1;i < N;i++)
recvLastT okenli] = false
recvLastT oken[z] = true
start token timer
if (t.seq = lastT oken.seq)
recvLastT oken[z] = true
for(i=1;i < N;i++)
if (recvLastT oken[i] = false
A faulty[i] = false )
delete ¢
return
stop token timer
deliver ¢ to Totem SRP

tokenTimerExpired()
for(i=1;i<N;i++)
if (recvLastT oken[i] = false )
problemCounter[i] + +
for(i=1;i<N;i++)
if ( problemCounter[i] > threshold)
faulty = true
deliver lastT oken to Totem SRP

Figure 2. Algorithm for active replication.

one of the networks. A node assigns messages and tokens
to the networks in a round-robin fashion.

As for active replication, passive replication requires the
Totem protocol to satisfy the following additional require-
ments:

sender receiver sender receiver

m,* m,X
m,Y . m? |
t? " my?
. LS >
B
A\ A\
Scenario 1 chenario 2 v

Figure 3. Out-of-order reception when using
passive replication.

P1: A node can request a retransmission of a message only
if the message has been dropped. None of the scenar-
ios given in Figure 3 can trigger a retransmission of a
delayed message.

P2: The networks must remain synchronized. If the net-
works are loaded differently, or if networks of different
speeds are used, the slower network must not fall be-
hind.

P3: The Totem RRP must make progress even if a message
or token is lost, or if a network fails.

P4: The Totem RRP must eventually detect a permanent
failure of a network.

P5: The Totem RRP network fault detector must not be
triggered by sporadic messages or token loss.

These requirements are comparable to Requirements A2 to
A6 for active replication. Because only a single copy of a
message (token) is sent, there is no requirement for single
message (token) delivery.

As in the case of active replication, we describe an al-
gorithm that transforms the Totem SRP into the Totem RRP
for passive network replication. The algorithm given in Fig-
ure 4 again forms a layer between the Totem SRP and the
networks.

This algorithm sends a single copy of a message or a
token. Received messages are passed to the Totem SRP
directly. To satisfy requirement P1, the algorithm passes
the token to the Totem SRP only if no message is miss-
ing. If there are outstanding messages, the token is stored
in a token buffer and a timer is started. Upon expiration
of the timer, the contents of the token buffer are passed to
the Totem SRP. This step is necessary to make the algo-
rithm comply to Requirement P3. The token timer is never
restarted while it is active.

To improve performance (not necessary for correctness),
the Totem RRP checks for a running token timer each time
it receives a message. If the timer is running and no more
messages are missing, this message is the reason that the



boolean faulty[N] = false
int lastSeq[N]=0

token lastToken ={0,0,...}
sendMsg( m )
do
sendMessageVia = (sendMessageVia + 1)

mod N
until ( faulty[sendMessageVia] = false )
broadcast m via network n*¢ndMessageVia

sendToken( ¢ )
do
sendTokenVia = (sendTokenVia + 1) mod N
until ( faulty[sendT okenVia] = false )
send ¢ to next token holder via network nsendTokenVia
recvMsg( m, n®, s )
deliver m to Totem SRP
if (anyMessagesMissing() = false
A tokenTimerRunning() = true )
deliver lastT oken to Totem SRP
stop token timer
messageMonitor(n®, s)

recvToken( ¢, n® )
if ( anyMessagesMissing() = false )
deliver ¢ to Totem SRP
else
lastT oken =t
start token timer
tokenMonitor(n®)

tokenTimerExpired()
deliver lastT oken to Totem SRP

Figure 4. Algorithm for passive replication.

boolean recvCount[N] = false

monitor( n® )
recvCount[n®] + +
for(i=1;i < N;i++)
if (max(recvCount|]) — recvCount[i] > threshold)
faulty[i] = true

Figure 5. Network monitor module for passive
replication.

token could not be delivered previously. Therefore, the
timer is disabled and the contents of the token buffer are
delivered. To provide fast recovery from message loss, the
timer’s timeout must be small. We chose a timeout of 10ms
for our experiments.

As in active replication, the token resolves the issue of
network desynchronization caused by differences in net-
work speeds or loads. The Totem SRP must wait until it
receives a new token before it can send any messages or
tokens. Because all networks participate in transferring to-
kens in a round-robin fashion, the system will resynchronize
when the token is sent via the slowest network. On average,
this happens every Nth hop and, in the worst case, after
N — 1 complete rotations. This mechanism is sufficient to
fulfill Requirement P2.

The network health monitor for passive replication con-
sists of M + 1 monitoring modules (where M is the number
of nodes in the system): one module to monitor the message
traffic for each of the nodes and one module to monitor the
token traffic. Because tokens are unicast, the token monitor
module is limited to the sending unit of the token sender, the
receiving unit of the token receiver, and all network devices
that are in the direct path. Although this might not cover all
components of the networks, token monitoring is a useful
alternative during periods in which no messages are sent.

Message and token monitoring modules are identical and
are shown in Figure 5. Such a module counts the numbers
of messages or tokens for each network. It checks whether
all networks receive the same number of messages or to-
kens. If the difference in receptions exceeds a threshold,
the network with the smaller number is marked as faulty.
This mechanism ensures Requirement P4.

When running for an extensive period of time, spo-
radic loss events might accumulate and cause the monitor
module to declare a healthy network as faulty, which vio-
lates Requirement P5. This condition is prevented by slowly
increasing recvCount for networks that lag behind. This
mechanism, which can be either time or message driven, is
not shown in Figure 5.

7. Active-Passive Replication

The active-passive replication style is a combination of
active replication and passive replication. It can be used if
there are at least three redundant networks available.

Active-passive replication uses a combination of the al-
gorithms described in Sections 5 and 6 for active replica-
tion and passive replication. A node broadcasts K copies
of each message and each token. Similar to passive repli-
cation, it sends messages and tokens to the networks in
a round-robin fashion: If a node has sent its last mes-
sage via network n'™, it sends the next message via net-
works p(mF1medN — -0y (m+K)medN A gimilar scheme
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Figure 6. Transmission rate of the Totem RRP
in msgs/sec for four nodes.

is used for sending tokens. If a node has sent its last to-
ken via network n?, it sends the next token via networks
n(t—i—l)modN’ o ,n(t+K)m0dN.

On the receiver side, the active-passive replication algo-
rithm can be regarded as a two-stage pipeline consisting of
the algorithm used for passive replication, followed by the
algorithm used for active replication. The first stage mon-
itors the network by keeping track of the number of mes-
sages sent by each node via a particular network. It for-
wards all messages and all tokens to the second stage, which
passes a token if it has received K copies of the token or
when a timeout occurs. Again, duplicate messages are sup-
pressed higher up in the Totem SRP protocol stack.

8. Performance

We have investigated the performance of the Totem Re-
dundant Ring Protocol for two configurations. The first
configuration consists of four Pentium II 450MHz worksta-
tions, and the second configuration consists of six Pentium
IIT workstations with 900MHz and 1GHz clock frequency.
All machines are equipped with two 3Com 3C905C TX-
NM 100Mbit/s Ethernet network interface cards. The work-
stations ran the Linux operating system with kernel versions
2.2.15 and 2.2.17, which set the socket send and receive
buffers to 64 Kbytes.

We conducted experiments with different message sizes
for active replication and passive replication and for non-
replicated networks. We did not conduct any experiments
for active-passive replication, because it requires a mini-
mum of three networks and we had only two networks avail-
able to us.
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Figure 7. Transmission rate of the Totem RRP
in msgs/sec for six nodes.

During the experiments, every node sent as many mes-
sages as the Totem flow control mechanism permitted. Fig-
ures 6 and 7 display the total send rate of the system as a
function of message size, and Figures 8 and 9 show the uti-
lized bandwidth. The peaks for message lengths of 700 and
1400 bytes are caused by the optimal usage of the Ethernet
frame. The maximum frame size is 1518 bytes, of which
94 bytes are used for the Ethernet header and trailer, IPv4
header, UDP header and the Totem header. This results in
a maximum payload of 1424 bytes for each Ethernet frame.
If several messages can fit into that space, they are placed
into a single packet by the message packing algorithm. If a
message is longer than 1424 bytes, Totem splits it up into
multiple packets.

Figures 6 to 9 show that active replication is the most
expensive form of network replication. The overhead in-
troduced by broadcasting all messages reduces the payload
bandwidth up to 1000-1500 msgs/sec when compared to the
unreplicated case. As for unreplicated networks, the 100
Mbit/sec Ethernet is the bottleneck when using active repli-
cation. The reduction in throughput is caused by doubling
the number of calls to the network protocol stack.

Passive replication, on the other hand, allows the proto-
col to handle 2000-4000 Kbytes more payload every second
than a system that runs on a single Ethernet. The network
utilization of the two-way passively replicated network ex-
ceeds the capacity of a single 100 Mbit/sec Ethernet, but
does not approach twice the transmission rate of the non-
replicated system. This indicates that the available network
bandwidth is no longer the limiting factor. Instead, the
processing time associated with detecting and retransmit-
ting missing messages, imposing a total order on the mes-
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Figure 9. Transmission rate of the Totem RRP
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sages, and updating liveness information for all participat-
ing nodes determines the maximum throughput of the sys-
tem. With faster processors, we expect the gap to widen
between the throughput of the unreplicated system and the
throughput of a system that uses passive replication.

9. Related Work

Over the past 15 years, there has been much work on
group communication systems [1, 4, 5, 11, 15, 17]. Those
systems are useful both for fault tolerant and highly avail-

able applications and for groupware and cooperative work
applications.

The Isis, Horus and Ensemble systems [4, 23] provide
the services of multicast, causal multicast and atomic (total
order) multicast. Those group communication systems pro-
vide increasing flexibility in allowing the user to choose the
protocol most appropriate for the application. While those
systems provide excellent mechanisms for replicated pro-
cessing to protect against faults in processes and processors,
they do not provide mechanisms for replicated communica-
tion to protect against faults in the communication network.

The Trans/Total system [15] includes the Trans protocol
which provides a causal order on messages, and the Total
algorithm which converts this causal order into a total or-
der. The Transis system [1] is based on the Trans protocol
and on the Isis application programmer interface. Again,
mechanisms are provided for replicated processing but not
for replicated communication.

The real-time multicast protocol (RRTM) provides reli-
able ordered multicast communication for distributed real-
time systems [5]. RRTM guarantees real-time message de-
livery without relying on synchronized clocks. The layering
and modularization of RRTM allows an application to select
a particular combination of atomicity and degree of order-
ing. RRTM requires networks that provide multicast fea-
tures and that manage the group membership, but provides
no mechanisms to handle non-transient network faults.

The systems mentioned above focus primarily on over-
coming process and processor faults and transient network
faults. Some provision is made to handle network partition-
ing faults, which are regarded as the loss of one or more
processors. However, none of those systems is able to pro-
vide service in the presence of non-transient network faults.

The Software Implemented Fault Tolerance (SIFT) com-
puter [24] and the Fault Tolerant Multiprocessor (FTMP)
[10] are two systems designed for airplanes and space-
craft. Both systems use multiple point-to-point links to in-
terconnect the processors, which ensures that communica-
tion faults cannot disable the system, but which prevents the
system from scaling to more than a few processors.

The Tandem NonStopl, NonStopll, TXP, and VLX [9]
connect up to 16 CPUs via dual 13 MByte/sec buses
(Dynabuses). The buses tolerate hot-swapping of CPUs.
A four-way redundant fiber optic bus extension allows the
connection of up to 14 Dynabuses, which may be sev-
eral kilometers apart. Tandem’s Guardian operating sys-
tem exploits those interconnects to provide high availability
through transaction processing, rather than for fault toler-
ance using replication.

The Time-Triggered Protocol [14] is a hard real-time
group communication protocol based on specialized hard-
ware that accesses a shared bus. All components of the sys-
tem are two-way redundant, including the communication



buses. The protocol assigns communication time slots to
each sender according to a preplanned schedule. The sys-
tem provides a high quality of fault tolerance, being resilient
even to Byzantine faults, and protects the communication
media from being over-utilized by any component. How-
ever, the design requires each message to be transmitted
four times, and requires preplanned scheduling.

The Beowolf project [21] connects standard Linux work-
stations with multiple Ethernet networks to form a network
of workstations (NOW). Multiple networks are to increase
the available bandwidth of the cluster, rather than to achieve
fault tolerance.

In [6] Christian describes a synchronous atomic broad-
cast protocol that is based on multiple redundant networks.
Similar to our active approach, identical copies of a mes-
sage are broadcast via all networks. The author assumes
upper bounds for message delivery latency of the networks.
This protocol is used in the Advanced Automation System
(AAS) air traffic control network [7].

Delta-4 [19] is framework for a fault-tolerant real-time
computing system. To communicate to groups of repli-
cated objects an atomic multicast protocol, AMp, is used.
AMp was implemented for redundant token buses and token
rings, but can be adjusted to run on any broadcast channels.

In [3], the authors introduce a a reliable broadcast pro-
tocol based on redundant broadcast channels. Unlike the
other work discussed here, which is based on a crash fault
model, this protocol protects against Byzantine faults.

10. Conclusion

In this paper we have presented the Totem Replicated
Ring Protocol (RRP), a group communication system that
utilizes multiple networks to achieve resilience against net-
work faults. The Totem RRP supports three styles of repli-
cation: active, passive and active-passive replication. We
have measured the performance of the Totem RRP for active
and passive replication and have compared it with the per-
formance of an unreplicated system. Because of the addi-
tional network overhead, the system experiences a decrease
in performance when run on an actively replicated network.
Moreover, the throughput of the Totem RRP using passive
replication exceeds the throughput of the unreplicated sys-
tem while being more resilient against network faults.
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