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Unconstrained Convex Optimization

for Structured Data Recovery

@ Challenges and Opportunities
@® Proximal Gradient Methods

© Accelerated Proximal Gradient Methods

“Since the fabric of the universe is most perfect and the work of

a most wise Creator, nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

— Leonhard Euler
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Challenges and Opportunities

Optimization Problems for Structured Data Recovery

Sparse Vector Recovery: recover a sparse x, from y = Az, € R™ or
y = Ax, + z € R™ via convex programs:

¢ Basis Pursuit (BP):
min ||z, subjectto Az =y. (1)
x

e LASSO: 1
m£n§||y—Aw||§+A|!w||1- (2)
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Challenges and Opportunities

Optimization Problems for Structured Data Recovery

Matrix Completion or Recovery: recover a low-rank L, from incomplete
Y = Pq[X,] or corrupted Y = L, + S, € R™*™ via convex programs:

® Matrix Completion:
min || X ||, subjectto Pqo[X]=Y. (3)
¢ Principal Component Pursuit (PCP):
Iili§1|]L|]*+A||S]]1 subjectto L+ S =Y. (4)
¢ Stable PCP:

. 1% 2
rg}gHLH*HHSHﬁ§HY—L—SHF- (5)
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Challenges and Opportunities

Optimization Challenges for Structured Data Recovery

min F(@) = f@) + gla). (6)
z€ —~~ —~—

smooth convex  nonsmooth convex

Challenge of Scale: scale algorithms to when n is very large.
Second order methods == First order methods... (7)
® Nonsmoothness: first order methods are slow for nonsmooth.

O(1/VEk) = O(1/k) = OQ1/k?) = O(e %) (8)

Equality Constraints: augmented Lagrange multiplier (ALM).

Separable Structures: alternating direction of multipliers method
(ADMM).
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Gradient Descent [Cauchy, 1847]

For minimizing a smooth convex function (App. B):
min f(x), « € C(a convex set), (9)

conduct local gradient descent search (App. D):

Tpr1 = Tk — WV f(2p), (10)

where a rule of thumb: v ~ 1/L, where L the Lipschitz constant (why?).

@)

figure courtesy of prof. Carlos Fernandez of NYU.
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Proximal Gradient Methods

Gradient Descent

For f(x) has L-Lipschitz continuous gradients if
IVf(x') = Vf@)l2 < Lllz’ — @2, Vo', eR" (11)
This gives a matching quadratic upper bound:
f@) < f@ ) s
= j@)+ (Vi(@),a -2+ [ ]
- Lo - fviEraE.
Take a step to the minimizer of this bound:
w1 = argmin f(@',w4) = @~ 7V (@e). (12)
Fact: this gives a convergence rate of O(1/k).
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Proximal Gradient Methods

Proximal Gradient Descent
The same (local) strategy for a convex function with a nonsmooth term:

min F(z) = f(z) + g(x). (13)
xzeR™ N~ ——
smooth convex  nonsmooth convex

Upper bound:

Fa,m) = f@n) + (Vi@ o— o) + 3 e - ol + g(2) (14)

= gHaz —(x — £V f(@n)|; + () + h(zi).  (15)

A step to the minimizer of the bound F(x,z;):

. L 2
Tyl = argmén 5“‘” — (), — %Vf(wk)) H2 +g(x) (16)
wy,
. L 2
= argming(z) + 3 [l —wil;. (17)
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Proximal Gradient Methods

Proximal Operators

Definition (Proximal Operator)

The proximal operator of a convex function g is
. . 1 2
prox,[w] = arg min g(x) + 5”(13 —wl3 ¢ . (18)

Iteration (17) can be written as:

Tp 1 = Prox,,p[wyl. (19)
For many convex functions g:

prox,[w] has a closed form or can be computed efficiently.
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Proximal Gradient Methods

Proximal Operators

Proximal operators for the £ norm and nuclear norm are given by:

@ Let g(x) = A||||1 be the £* norm. Then prox,[w] is the
soft-thresholding function applied element-wise:

(proxy[w]); = soft{w;, \} = sign(w;) max(|w;| — A,0).

@ Let g(X) = M| X[« be the matrix nuclear norm. Then prox,[W] is
the singular-value soft thresholding function:

prox,[W] = Usoft{ ¥, \} V™,
where (U, X%, V') are the SVD of W. In other words, prox,[W]

applies component-wise soft thresholding on the singular values of W .
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Proximal Operators

Proof ideas: The objective function reaches minimum when the
subdifferential of A||z||1 + 3||& — w3 contains zero,

Ti—w; + A, x; >0

0 (x—w)+\|z|1 = —w; + \[-1,1], =0, i=1,...,n.
T — W — A, z; <0

Thresholding:

y = soft(z, 7) y = soft(z,7), y > 0

— Hard thresholding
— Soft thresholding

—a 0 @
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Proximal Gradient Algorithm

Proximal Gradient (PG)
Problem Class: min, F(x) = f(x) + g(x)

f,9 :R™ = R convex, Vf L-Lipschitz and g nonsmooth.
Basic Iteration: set g € R".
Repeat:
1
Wy, < T — ZVf(a:k),
Tiy1 4 Proxg, r[wy].
Convergence Guarantee:

F(xy) — F(x.) converges at a rate of O(1/k).
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Proximal Gradient for LASSO

Iterative soft-thresholding algorithm (ISTA):

. Problem: min, |y — Az|3 + Al|z||1, given y € R™, A € R™*".
: Input: xp € R” and L > A\pax(A*A).
: for (k=0,1,2,...,K —1) do
Wi < T, — %A*(Amk — y).
Tyl & SOft(’wk,)\/L).
end for
: Output: x, < xk.

The unrolled iterations
resemble a deep neural Deep

N |
network!! Network
Module

RelLu
0

!Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun,
ICML 2010. Also known as the Learned ISTA (LISTA).
Qe i L 8



Proximal Gradient Methods

Proximal Gradient for LASSO
Iterative soft-thresholding algorithm (ISTA):

. Problem: min, |y — Az|3 + Al|z||1, given y € R™, A € R™*".
: Input: xp € R” and L > A\pax(A*A).
: for (k=0,1,2,...,K —1) do

Wi < T, — l14*(A$],€ — y).

Tpiq soft(ka,)\/L). \\\
end for
: Output: x, < xg.
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Projected Gradient Descent.
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Image courtesy of Prof. Qing Qu of Univ. Michigan. r T T T : .
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The Heavy Ball Method [Polyak, 1964]
Gradient descent:

Tpr1 = @k — aV f(xr).

(20)
The heavy ball method (a.k.a the momentum method):
T = xp — oV f(zr) + B(xk — Tp—1) -

| S —

(21) /Af i
momentum

® Basis for popular ADAM for train deep neural networks.

® Worst convergence rate is still O(1/k), yet best possible is O(1/k?)
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____ Accelerated Proimal Gradient Methods |
Accelerated Gradient Descent [Nesterov, 1983]

Generate an auxiliary point pj1 of the form:

Prt1 = T + B (Th — 1),

Move from xj to pr+1, and gradient descend from it:

Tpr1 = Prr1 — @ Vf(Pry1) - (22)
———

a stroke of genius

The weights « and {S;11} are carefully chosen:

14 /1 + 43 o1
i k a=1/L. (23)

=1, tpg=—J3 " -
1 ) k+1 2 5 Bk-i—l tk—i—l )

® We may not always have f(xri1) < f(xx).

e Achieve optimal convergence rate O(1/k?) among 1st order methods.
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Accelerated Gradient Descent [Nesterov, 1983]
Accelerated Proximal Gradient (APG)

Problem Class: min, F'(z) = f(x) + g(x),
f, g convex, with V f L-Lipschitz and g nonsmooth.

Basic Iteration: set g € R", p; = ®1 <+ xg, and t; <« 1.
Repeat for k =1,2,..., K:

1—|—\/1—{—4tk2 tpy — 1
—2 .

y o Brg1
k1

tk+1 —
Pit1 < Tk + Bt (r — 1)

1
Tg+1 < ProxXg [pkH - zvf(pkﬂ) ]

~
proximal gradient

Convergence Guarantee:
F(x) — F(x,) converges at a rate of O(1/k?).
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GD versus Accelerated GD

107 Gradient Descent vs Accelerated Gradient Descent

— GD
— AccGD| |

102 | E

10* } 1

error

| ‘ mmmmﬂﬂnﬂn
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iterations

Image courtesy of Prof. Qing Qu of Univ. Michigan.
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APG for LASSO

FISTA: Accelerated Proximal Gradient (APG) for LASSO

[y

. Problem: min, §|y — Az|3 + \||z||1, given y € R™, A € R™*",
: Input: g € R", p; = @1 « xo, and t1 < 1, and L > A\ax(A*A).
: for (k=1,2,...,K —1) do

14/ 14482
th1 < —5 =5 Brtr <

w N

4 b=l
(%]

5 Pry1 — Tk + Brp1 (e — Tp—1).

6 Wiyl < Pry1 — A (Apry1 — y).

7 Tl < SOft[UJk+1, )\/L]

8

9

. end for
: Output: x, < xk.
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APG for Stable PCP

Accelerated Proximal Gradient (APG) for Stable PCP

1: Problem: ming g || L« + A||S|li + §|Y — L — S||%, given Y.
2: Input: Ly, Sy € Rmxn, Pls =81« Sy, PlL =L+ Ly, t; + 1.
3: for (k=1,2,. —1) do

1+\/1+4t2
4 g » Bre1 tk+11
5. PL, « L + Bi1 (L — Li—1); PPy < Sk + Brg1 (Sk — Sk-1).
6: Wiy <Y — PI§+1 and compute SVD: W4, = Uk+12k+1vk*+1
7: Ly Uk+150ft[2k+1, 1//1]‘/;:_1; Sk+1 — SOft[( k+1) )\/,u]
8: end for
9: Qutput: L, < Lg:S, + Sk.
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Accelerated Proximal Gradient Methods

Algorithm: A Little Lesson from History

Comparison from chronological development of algorithms for solving the

PCP problem: the older the algorithm, the more efficient!
GOOD NEWS: Scalable first-order gradient-descent algorithms:

« Proximal Gradient [Osher, Mao, Dong, Yin ’09,Wright et. al’09, Cai et. al.'09].

* Accelerated Proximal Gradient [Nesterov ‘83, Beck and Teboulle ‘09]:
+ Augmented Lagrange Multiplier [Hestenes ‘69, Powell "69]:

« Alternating Direction Method of Multipliers [Gabay and Mercier ‘76].

For a 1000x1000 matrix of rank 50, with 10% (100,000) entries
randomly corrupted: min ||Al[, + A

1 subj A+ L =D.

Algorithms Accuracy Rank |IE||_0 # iterations | time (sec)
IT 5.99e-006 | 50 101,268 8,550 119,370.3
DUAL 8.65e-006 | 50 100,024 822 1,855.4
APG 5.85e-006 | 50 100,347 134 1,468.9
APGp 5.91e-006 | 50 100,347 134 82.7
EALMp 2.07e-007 | 50 100,014 34 37.5
IALMp 3.83e-007 | 50 99,996 23 11.8
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GD for Strongly Convex Problems

A troubling fact though: Not supposed to be this fast!
Reason? Consider minimizing a L-Lipschitz continuous function
mcgn f(x), =eR"™ (24)
Assume f(x) is u-strongly convex:
f((@) > f(2) + (Vf(@).2' - 2) + T2’ — =3 (25)
This implies (assuming f is twice differentiable):

0 < ul <V%f(x) < LI
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Accelerated Proximal Gradient Methods

Convergence of GD for Strongly Convex Problems

Theorem (see Appendix D).

f(x): p-strongly convex and L-Lipschitz continuous.

For gradient descent with a step size t = LLW we have:

k
K—1
fon—ala < (557 ool (20

where k = L/u and @, is the minimizer.

Convergence Rates for Gradient Descent:
©® f non-smooth: O(1/Vk).
@® f differentiable: O(1/k).
® f smooth, Vf Lipschitz: O(1/k?).
O f strongly convex: O(e™).
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Accelerated Proximal Gradient Methods

Convergence of Restricted Strong Convex Problems

Fact: Structured signal recovery problems such as LASSO and PCP
satisfy restricted strong convexity. Hence, gradient descent enjoys
globally linear convergence up to the statistical precision of the model.?

n=2500,w=0.25,q=0 @ =16.3069 ,w =025 ,4=0
~-d-5000 ~-d=5000
~©-+d=10000 ©-d=10000)
|-m-d=20000 = -m-d=20000)
E
g - \
g
£ 4
"q. !
=
10 \ e 10 \

150 150

50 100 50 100
Tteration Count Tteration Count

(a) (b)

programs (£1-
hows the log optimization error log || — 0| versus the itera-
tion number ¢. Panel (a) shows three curves, corresponding to dimensions d € {5000, 10000, 20000},
sparsity s = [V/d], and all with the same sample size n = 2500. All cases show geometric con-
vergence, but the rate for larger problems becomes progressively slower. (b) For an appropriately

rescaled sample size (a = ;7). all three convergence rates should be roughly the same, as predicted
by the theory.

2Fast global convergence of gradient methods for high-dimensional statistical
recovery, Agarwal, Negahban, Wainwright, NIPS 2010.
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Assignments

® Reading: Section 8.1 - 8.3 of Chapter 8. Appendix B, C, and D.
® Programming Homework #3.
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