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Unconstrained Convex Optimization
for Structured Data Recovery

1 Challenges and Opportunities

2 Proximal Gradient Methods

3 Accelerated Proximal Gradient Methods

“Since the fabric of the universe is most perfect and the work of
a most wise Creator, nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

– Leonhard Euler
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Challenges and Opportunities

Optimization Problems for Structured Data Recovery

Sparse Vector Recovery: recover a sparse xo from y = Axo ∈ Rm or
y = Axo + z ∈ Rm via convex programs:

• Basis Pursuit (BP):

min
x
‖x‖1 subject to Ax = y. (1)

• LASSO:

min
x

1

2
‖y −Ax‖22 + λ‖x‖1. (2)
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Challenges and Opportunities

Optimization Problems for Structured Data Recovery

Matrix Completion or Recovery: recover a low-rank Lo from incomplete
Y = PΩ[Xo] or corrupted Y = Lo + So ∈ Rm×n via convex programs:

• Matrix Completion:

min ‖X‖∗ subject to PΩ[X] = Y . (3)

• Principal Component Pursuit (PCP):

min
L,S
‖L‖∗ + λ ‖S‖1 subject to L+ S = Y . (4)

• Stable PCP:

min
L,S
‖L‖∗ + λ ‖S‖1 +

µ

2
‖Y −L− S‖2F . (5)

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 12, 2021 4 / 25



Challenges and Opportunities

Optimization Challenges for Structured Data Recovery

min
x∈Rn

F (x)
.
= f(x)︸︷︷︸

smooth convex

+ g(x).︸ ︷︷ ︸
nonsmooth convex

(6)

• Challenge of Scale: scale algorithms to when n is very large.

Second order methods =⇒ First order methods... (7)

• Nonsmoothness: first order methods are slow for nonsmooth.

O(1/
√
k) =⇒ O(1/k) =⇒ O(1/k2) =⇒ O(e−αk) (8)

• Equality Constraints: augmented Lagrange multiplier (ALM).

• Separable Structures: alternating direction of multipliers method
(ADMM).
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Proximal Gradient Methods

Gradient Descent [Cauchy, 1847]

For minimizing a smooth convex function (App. B):

min f(x), x ∈ C (a convex set), (9)

conduct local gradient descent search (App. D):

xk+1 = xk − γk∇f(xk), (10)

where a rule of thumb: γ ≈ 1/L, where L the Lipschitz constant (why?).

figure courtesy of prof. Carlos Fernandez of NYU.
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Proximal Gradient Methods

Gradient Descent

For f(x) has L-Lipschitz continuous gradients if

‖∇f(x′)−∇f(x)‖2 ≤ L‖x′ − x‖2, ∀x′,x ∈ Rn. (11)

This gives a matching quadratic upper bound:

f(x′) ≤ f̂(x′,x)

.
= f(x) + 〈∇f(x),x′ − x〉+ L

2

∥∥x′ − x
∥∥2

2

=
L

2

∥∥x′ − (x− 1
L∇f(x))

∥∥2

2
+ h(x).

Take a step to the minimizer of this bound:

xk+1 = argmin
x′

f̂(x′,xk) = xk −
1

L
∇f(xk). (12)

Fact: this gives a convergence rate of O(1/k).
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Proximal Gradient Methods

Proximal Gradient Descent
The same (local) strategy for a convex function with a nonsmooth term:

min
x∈Rn

F (x)
.
= f(x)︸︷︷︸

smooth convex

+ g(x).︸ ︷︷ ︸
nonsmooth convex

(13)

Upper bound:

F̂ (x,xk) = f(xk) + 〈∇f(xk),x− xk〉+
L

2
‖x− xk‖22 + g(x)(14)

=
L

2

∥∥x− (xk − 1
L∇f(xk))

∥∥2

2
+ g(x) + h(xk). (15)

A step to the minimizer of the bound F̂ (x,xk):

xk+1 = argmin
x

L

2

∥∥x− (xk − 1
L∇f(xk))︸ ︷︷ ︸
wk

∥∥2

2
+ g(x) (16)

= argmin
x
g(x) +

L

2
‖x−wk‖22 . (17)
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Proximal Gradient Methods

Proximal Operators

Definition (Proximal Operator)

The proximal operator of a convex function g is

proxg[w]
.
= argmin

x

{
g(x) +

1

2
‖x−w‖22

}
. (18)

Iteration (17) can be written as:

xk+1 = proxg/L[wk]. (19)

For many convex functions g:

proxg[w] has a closed form or can be computed efficiently.
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Proximal Gradient Methods

Proximal Operators

Proposition

Proximal operators for the `1 norm and nuclear norm are given by:

1 Let g(x) = λ‖x‖1 be the `1 norm. Then proxg[w] is the
soft-thresholding function applied element-wise:

(proxg[w])i = soft{wi, λ}
.
= sign(wi)max(|wi| − λ, 0).

2 Let g(X) = λ‖X‖∗ be the matrix nuclear norm. Then proxg[W ] is
the singular-value soft thresholding function:

proxg[W ] = Usoft{Σ, λ}V ∗,

where (U ,Σ,V ) are the SVD of W . In other words, proxg[W ]
applies component-wise soft thresholding on the singular values of W .

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 12, 2021 10 / 25



Proximal Gradient Methods

Proximal Operators

Proof ideas: The objective function reaches minimum when the
subdifferential of λ‖x‖1 + 1

2‖x−w‖22 contains zero,

0 ∈ (x−w) + λ∂‖x‖1 =


xi − wi + λ, xi > 0
−wi + λ[−1, 1], xi = 0
xi − wi − λ, xi < 0

, i = 1, . . . , n.

Thresholding:
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Proximal Gradient Methods

Proximal Gradient Algorithm

Proximal Gradient (PG)

Problem Class: minx F (x) = f(x) + g(x)

f, g : Rn → R convex, ∇f L-Lipschitz and g nonsmooth.

Basic Iteration: set x0 ∈ Rn.
Repeat:

wk ← xk −
1

L
∇f(xk),

xk+1 ← proxg/L[wk].

Convergence Guarantee:

F (xk)− F (x?) converges at a rate of O(1/k).
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Proximal Gradient Methods

Proximal Gradient for LASSO

Iterative soft-thresholding algorithm (ISTA):

1: Problem: minx
1
2‖y −Ax‖22 + λ‖x‖1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn and L ≥ λmax(A
∗A).

3: for (k = 0, 1, 2, . . . ,K − 1) do
4: wk ← xk − 1

LA
∗(Axk − y).

5: xk+1 ← soft(wk, λ/L).
6: end for
7: Output: x? ← xK .

The unrolled iterations
resemble a deep neural
network!1

1Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun,
ICML 2010. Also known as the Learned ISTA (LISTA).
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Proximal Gradient Methods

Proximal Gradient for LASSO
Iterative soft-thresholding algorithm (ISTA):

1: Problem: minx
1
2‖y −Ax‖22 + λ‖x‖1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn and L ≥ λmax(A
∗A).

3: for (k = 0, 1, 2, . . . ,K − 1) do
4: wk ← xk − 1

LA
∗(Axk − y).

5: xk+1 ← soft(wk, λ/L).
6: end for
7: Output: x? ← xK .

Proximal Gradient versus
Projected Gradient Descent.

Image courtesy of Prof. Qing Qu of Univ. Michigan.
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Accelerated Proximal Gradient Methods

The Heavy Ball Method [Polyak, 1964]
Gradient descent:

xk+1 = xk − α∇f(xk). (20)

The heavy ball method (a.k.a the momentum method):

xk+1 = xk − α∇f(xk) + β
(
xk − xk−1

)︸ ︷︷ ︸
momentum

. (21)

• Basis for popular ADAM for train deep neural networks.

• Worst convergence rate is still O(1/k), yet best possible is O(1/k2).
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Accelerated Proximal Gradient Methods

Accelerated Gradient Descent [Nesterov, 1983]

Generate an auxiliary point pk+1 of the form:

pk+1
.
= xk + βk+1

(
xk − xk−1

)
.

Move from xk to pk+1, and gradient descend from it:

xk+1 = pk+1 − α ∇f(pk+1)︸ ︷︷ ︸
a stroke of genius

. (22)

The weights α and {βk+1} are carefully chosen:

t1 = 1, tk+1 =
1 +

√
1 + 4t2k

2
, βk+1 =

tk − 1

tk+1
, α = 1/L. (23)

• We may not always have f(xk+1) ≤ f(xk).
• Achieve optimal convergence rate O(1/k2) among 1st order methods.
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Accelerated Proximal Gradient Methods

Accelerated Gradient Descent [Nesterov, 1983]

Accelerated Proximal Gradient (APG)

Problem Class: minx F (x) = f(x) + g(x),
f, g convex, with ∇f L-Lipschitz and g nonsmooth.

Basic Iteration: set x0 ∈ Rn, p1 = x1 ← x0, and t1 ← 1.
Repeat for k = 1, 2, . . . ,K:

tk+1 ←
1 +

√
1 + 4tk2

2
, βk+1 ←

tk − 1

tk+1
.

pk+1 ← xk + βk+1

(
xk − xk−1

)
.

xk+1 ← proxg/L
[
pk+1 −

1

L
∇f(pk+1)︸ ︷︷ ︸

proximal gradient

]
.

Convergence Guarantee:
F (xk)− F (x?) converges at a rate of O(1/k2).
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Accelerated Proximal Gradient Methods

GD versus Accelerated GD

Image courtesy of Prof. Qing Qu of Univ. Michigan.
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Accelerated Proximal Gradient Methods

APG for LASSO

FISTA: Accelerated Proximal Gradient (APG) for LASSO

1: Problem: minx
1
2‖y −Ax‖22 + λ‖x‖1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn, p1 = x1 ← x0, and t1 ← 1, and L ≥ λmax(A
∗A).

3: for (k = 1, 2, . . . ,K − 1) do

4: tk+1 ←
1+
√

1+4t2k
2 ; βk+1 ← tk−1

tk+1
.

5: pk+1 ← xk + βk+1(xk − xk−1).
6: wk+1 ← pk+1 − 1

LA
∗(Apk+1 − y).

7: xk+1 ← soft[wk+1, λ/L].
8: end for
9: Output: x? ← xK .
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Accelerated Proximal Gradient Methods

APG for Stable PCP

Accelerated Proximal Gradient (APG) for Stable PCP

1: Problem: minL,S ‖L‖∗ + λ‖S‖1 + µ
2‖Y −L− S‖2F , given Y .

2: Input: L0,S0 ∈ Rm×n, P S
1 = S1 ← S0, P L

1 = L1 ← L0, t1 ← 1.
3: for (k = 1, 2, . . . ,K − 1) do

4: tk+1 ←
1+
√

1+4t2k
2 , βk+1 ← tk−1

tk+1
.

5: P L
k+1 ← Lk + βk+1

(
Lk −Lk−1

)
; P S

k+1 ← Sk + βk+1

(
Sk − Sk−1

)
.

6: Wk+1 ← Y − P S
k+1 and compute SVD: Wk+1 = Uk+1Σk+1V

∗
k+1.

7: Lk+1 ← Uk+1soft[Σk+1, 1/µ]V
∗
k+1; Sk+1 ← soft[(Y − P L

k+1), λ/µ].
8: end for
9: Output: L? ← LK ;S? ← SK .
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Accelerated Proximal Gradient Methods

Algorithm: A Little Lesson from History
Comparison from chronological development of algorithms for solving the
PCP problem: the older the algorithm, the more efficient!
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Accelerated Proximal Gradient Methods

GD for Strongly Convex Problems

A troubling fact though: Not supposed to be this fast!

Reason? Consider minimizing a L-Lipschitz continuous function

min
x
f(x), x ∈ Rn. (24)

Assume f(x) is µ-strongly convex:

f((x′) ≥ f(x) + 〈∇f(x),x′ − x〉+ µ

2
‖x′ − x‖22. (25)

This implies (assuming f is twice differentiable):

0 ≺ µI � ∇2f(x) � LI.
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Accelerated Proximal Gradient Methods

Convergence of GD for Strongly Convex Problems

Theorem (see Appendix D).
f(x): µ-strongly convex and L-Lipschitz continuous.
For gradient descent with a step size t = 2

L+µ , we have:

‖xk − x?‖2 ≤
(
κ− 1

κ+ 1

)k
‖x0 − x?‖2, (26)

where κ = L/µ and x? is the minimizer.

Convergence Rates for Gradient Descent:

1 f non-smooth: O(1/
√
k).

2 f differentiable: O(1/k).

3 f smooth, ∇f Lipschitz: O(1/k2).

4 f strongly convex: O(e−αk).

Ma (EECS Department, UC Berkeley) EECS208, Fall 2021 October 12, 2021 23 / 25



Accelerated Proximal Gradient Methods

Convergence of Restricted Strong Convex Problems
Fact: Structured signal recovery problems such as LASSO and PCP
satisfy restricted strong convexity. Hence, gradient descent enjoys
globally linear convergence up to the statistical precision of the model.2

2Fast global convergence of gradient methods for high-dimensional statistical
recovery, Agarwal, Negahban, Wainwright, NIPS 2010.
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Accelerated Proximal Gradient Methods

Assignments

• Reading: Section 8.1 - 8.3 of Chapter 8. Appendix B, C, and D.

• Programming Homework #3.
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