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Preface

These lecture notes grew out of a Master’s course on differential ge-
ometry which I gave at the University of Leeds in Spring 1992. Their
main purpose is to introduce the beautiful theory of Riemannian ge-
ometry, a still very active area of mathematical research.

This is a subject with no lack of interesting examples. They are
indeed the key to a good understanding of it and will therefore play a
major role throughout this work. Of special interest are the classical Lie
groups allowing concrete calculations of many of the abstract notions
on the menu.

The study of Riemannian geometry is rather meaningless without
some basic knowledge on Gaussian geometry i.e. the geometry of curves
and surfaces in 3-dimensional Euclidean space. For this we recommend
the following text: M. P. do Carmo, Differential geometry of curves and
surfaces, Prentice Hall (1976).

These lecture notes are written for students with a good under-
standing of linear algebra, real analysis of several variables, the classical
theory of ordinary differential equations and some topology. The most
important results stated in the text are also proven there. Others are
left to the reader as exercises, which follow at the end of each chapter.
This format is aimed at students willing to put hard work into the
course. For further reading we recommend the excellent standard text:
M. P. do Carmo, Riemannian Geometry, Birkhauser (1992).

[ am very grateful to my enthusiastic students and many other
readers who have, throughout the years, contributed to the text by
giving numerous valuable comments on the presentation.

Norra Nobbelov the 11th of April 2025

Sigmundur Gudmundsson
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CHAPTER 1

Introduction

On the 10th of June 1854 Georg Friedrich Bernhard Riemann (1826-
1866) gave his famous ”Habilitationsvortrag” in the Colloquium of the
Philosophical Faculty at Gottingen. His talk ”Uber die Hypothesen,
welche der Geometrie zu Grunde liegen” is often said to be the most
important in the history of differential geometry. Johann Carl Friedrich
Gauss (1777-1855) was in the audience, at the age of 77, and is said to
have been very impressed by his former student.

Riemann’s revolutionary ideas generalised the geometry of surfaces
which had earlier been initiated by Gauss. Later this lead to an exact
definition of the modern concept of an abstract Riemannian manifold.

The development of the 20th century has turned Riemannian ge-
ometry into one of the most important parts of modern mathematics.
For an excellent survey on this vast field we recommend the following
work written by one of the main actors: M. Berger, A Panoramic View
of Riemannian Geometry, Springer (2003).






CHAPTER 2

Differentiable Manifolds

In this chapter we introduce the important concept of a differen-
tiable manifold. This generalises the curves and surfaces in R? studied
in classical differential geometry. Our manifolds are modelled on the
standard differentiable structure on the classical vector spaces R™ via
compatible local charts. We give many explicit examples of differ-
entiable manifolds, study their submanifolds and differentiable maps
between them.

Let R™ be the m-dimensional real vector space equipped with its
standard topology 7, induced by the Euclidean metric d on R™ given
by

d(z,y) = \/(131 — )2+ (T — Ym)?
For a natural number r and an open subset U of R™ we will by
C"(U,R™) denote the r-times continuously differentiable maps from
U to R™. By smooth maps U — R" we mean the elements of the set

C*(U,R") = () C"(U,R).
r=0
The set of real analytic maps from U to R™ will be denoted by
C¥(U,R™). For the theory of real analytic maps we recommend the
important text: S. G. Krantz and H. R. Parks, A Primer of Real An-
alytic Functions, Birkh&user (1992).

Definition 2.1. Let (M, 7)) be a topological Hausdorff space with
a countable basis. Then M is called a topological manifold if there
exists a positive integer m € Z* such that for each point p € M we
have an open neighbourhood U of p, an open subset V' of R™ and a
homeomorphism x : U — V. The pair (U, z) is called a local chart
(or local coordinates) on M. The natural number m is called the

dimension of M. To denote that the dimension of M is m we write
M™,

According to Definition 2.1 an m-dimensional topological manifold
(M™,T) is locally homeomorphic to the standard R™. We will now
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introduce a differentiable structure A on M via its local charts and
turn it into a differentiable manifold.

Definition 2.2. Let M be an m-dimensional topological manifold.
Then a C"-atlas on M is a collection

A={(U,,z,)|a €T}
of local charts on M such that A covers the whole of M i.e.
M= JU,
and for all o, 5 € Z the corresponding transition maps
rg o x(;l’xa(UaﬂUB) : [Ba(Ua N Uﬂ) CR™ - R™

are r-times continuously differentiable i.e. of class C".

A local chart (U, x) on M is said to be compatible with a C"-atlas
A on M if the union AU {(U,z)} is a C"-atlas on M. A C"-atlas A
on M is said to be maximal if it contains all the local charts that are
compatible with it.

A maximal atlas A on M is also called a C"-structure on M. The
pair (M, A) is said to be a C"-manifold, or a differentiable manifold
of class C", if M is a topological manifold and A is a C"-structure on
M. A differentiable manifold is said to be smooth if its transition
maps are '™ and real analytic if they are C*.

Remark 2.3. It should be noted that a given C"-atlas A on a
topological manifold M determines a unique C"-structure A on M

containing A. It simply consists of all the local charts on M compatible
with A.

Example 2.4. For the standard topological space (R™, 7,,,) we have
the trivial C“-atlas

A={(R",2) |z :pr p}
inducing the standard C*-structure A on R™,
Example 2.5. Let S™ denote the unit sphere in R™*! ie.
St={peR" pi+ -+ =1}

equipped with the subset topology 7T induced by the standard 7,1
on R™1 Since the subset S™ is closed and bounded in R™*! it is
compact. Let N be the north pole N = (1,0) € R x R™ and S be
the south pole S = (—1,0) on S™, respectively. Put Uy = S™ \ {N},
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Us = S™\ {S} and define the homeomorphisms zy : Uy — R™ and
rg : US — R™ by

1
I—p

TN (D1, Dmy1) (P2s- -+ Pm+1),

( +1) —1 ( +1)
Tg: ey Pmal) sy Pmal)-
s \P1 Pm+1 1 1p2 Pm+1

Then the C¥ transition maps
rs oy, oy 0 a5t iR\ {0} — R™\ {0)

are both given by
x

Ja]?
so A ={(Uy,zn), (Us,xs)} is a C¥-atlas on S™. The corresponding
C“-manifold (S™,.A) is called the m-dimensional standard sphere.

T +—r

Another interesting example of a differentiable manifold is the m-
dimensional real projective space RP™.

Example 2.6. On the set R™"!\ {0} we define the equivalence
relation = by

p = q if and only if there exists a A € R* such that p = \-gq.
Let RP™ be the quotient space (R™!\ {0})/ = and
7 R™1\ {0} — RP™

be the natural projection, mapping a point p € R™™!\ {0} onto the
equivalence class [p] € RP™ i.e. the punctured line

[p] = {\-p e R™| X € R*},

generated by p.

We then equip the set RP™ with the quotient topology 7 induced
by m and T,,41 on R™"1. This means that a subset U of RP™ is
open if and only if its pre-image 7 '(U) is open in R™*!\ {0}. For
ke {l,...,m+ 1} we then define the open subset Uy of RP™ by

Ur = {lp] € RP™ [ pi # 0}

and the local charts zy : U, C RP™ — R™ by
e : [p] = (&7."’pk—1,1’pk+l’.”’pm—l-l).

Pk Pk Pk Pk

If [p] = [¢q] € Uy then p = X - ¢ for some X € R* so p;/pr = qi/q for all
[. This shows that the maps zy : U, C RP™ — R™ are all well defined.
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A line [p] € RP™ is represented by a non-zero point p € R™*! so
at least one of its components is non-zero. This shows that
m+1

RP™ = U U,.
k=1

The corresponding transition maps
X © ml_llfﬂz(UzﬂUk) : iBl(Ul N Uk) CR™ — R™
are given by
p1 Pi—1 , Pt Pm+1 Y41 Pr—1 . Dik+1 Pmt1
(—,..., , 1, s Y= (—, ..., , 1, s )
b Y2/ Y2/ Y2 Pk Pk Pk Pk
so the collection

Y

is a C*-atlas on RP™. The real-analytic manifold (RP™, A) is called
the m-dimensional real projective space.

Remark 2.7. The above definition of the real projective space
RP™ might seem very abstract. But later on we will embed RP™
into the vector space Sym(R™!) of symmetric (m + 1) x (m + 1) real
matrices. For this see Example [3.20]

Example 2.8. Let C be the extended complex plane given by
C=CuU {0}
and put C* = C\ {0}, Uy = C and U, = C\ {0}. Then define the
local charts xp : Uy — C and 2, : Uy, — C on C by z¢ : z — 2z and
Too : W 1/w, respectively. Then the corresponding transition maps
Toooxy 2902} C* — C*
are both given by z +— 1/zs0 A = {(Up, %0), (Uso, Too) } is a C*-atlas on
C. The real analytic manifold (C,.A) is called the Riemann sphere.

For the product of two differentiable manifolds we have the following
important result.

Proposition 2.9. Let (Ml,,[ll) and (Mg,flg) be two differentiable
manifolds of class C". Let M = M x My be the product space with the
product topology. Then there exists an atlas A on M turning (M, fl)
into a differentiable manifold of class C" and the dimension of M sat-
isfies

dim M = dim M; + dim Ms.

PROOF. See Exercise .11 O
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The concept of a submanifold of a given differentiable manifold
will play an important role as we go along and we will be especially
interesting in the connection between the geometry of a submanifold
and that of its ambient space.

Definition 2.10. Let m,n be positive integers with m < n and
(N", Ay) be a C"-manifold. A subset M of N is said to be a sub-
manifold of N if for each point p € M there exists a local chart
Uy, z,) € Ay such that p € U, and z, : U, C N — R™ x R*™
satisfies

2p(Up N M) = z,(Up) N (R™ x {0}).
The natural number (n — m) is called the codimension of M in N.

Proposition 2.11. Let m,n be positive integers with m < n and
(N™, le) be a C"-manifold. Let M be a submanifold of N equipped with
the subset topology and m : R™ x R"™™ — R™ be the natural projection
onto the first factor. Then

Av = {(Up N M, (m02y)|v,0m) [ p € M}

is a C"-atlas for M. Hence the pair (M, .,ZlM) 1s an m-dimensional
C"-manifold. The differentiable structure A is called the induced
differentiable structure on M by Ay on N.

PROOF. See Exercise 2.2 O

Remark 2.12. Our next aim is to prove Theorem which is a
useful tool for the construction of submanifolds of R™. For this we use
the classical inverse mapping theorem stated below. Note that if

F:U—-R"

is a differentiable C"-map defined on an open subset U of R then its
differential dF, : R™ — R" at the point p € U is a linear map given by
the n X m matrix

OF/0x1(p) ... OF/0xy(p)
de = : :

OF,/0x1(p) ... OF,/0x,(p)

If v: R — U is a curve in U such that v(0) = p and 4(0) = v € R™,

then the composition F' oy : R — R" is a curve in R" and according

to the chain rule we have
d
de U = %(F o ”7(8))’5:0.

This is the tangent vector of the curve F o~ at F(p) € R™.
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The above shows that the differential dF, can be seen as
a linear map that maps tangent vectors at p € U to tangent
vectors at the image point F(p) € R". This will later be gen-
eralised to the manifold setting.

We now state the classical inverse mapping theorem well known
from multivariable analysis.

Fact 2.13. Let U be an open subset of R™ and F' : U — R™ be a

C"-map. If p € U and the differential
dF, : R™ — R™
of F' at p 1s invertible then there exist open neighbourhoods U, around p
and U, around q = F(p) such that F' = F|y, : U, — U, is bijective and
the inverse (F)~' : U, — U, is a C"-map. The differential (dF~Y), of
F~1 at q satisfies
(dF_l)q = (de)_l

i.e. it is the inverse of the linear differential dF, of F' at p.

Before stating the classical implicit mapping theorem we remind
the reader of the following well known notions.

Definition 2.14. Let m, n be positive integers, U be an open subset
of R™ and F' : U — R" be a C"-map. A point p € U is said to be
regular for F, if the differential

dF, :R™ — R"

is of full rank, but critical otherwise. A point ¢ € F'(U) is said to be
a regular value of F if every point in the pre-image F~'({q}) of ¢ is
regular.

Remark 2.15. Note that if m,n are positive integers with m > n
then p € U is a regular point for

F=(F,... F):U=>R"

if and only if the gradients gradF}, ..., gradF,, of the coordinate func-
tions Fi, ..., F, : U — R are linearly independent at p, or equivalently,
the differential dF}, of ' at p satisfies the following condition

det[dF, - (dF,)"] # 0.

The next result is a useful tool for constructing submanifolds of the
classical vector space R™.
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Theorem 2.16 (The implicit function theorem). Let m,n be pos-
itive integers with m >n and F : U — R™ be a C"-map from an open
subset U of R™. If ¢ € F(U) is a reqular value of F' then the pre-image
F~'({q}) of q is an (m — n)-dimensional submanifold of R™ of class
cr.

PROOF. Let p be an element of F~*({¢}) and K, be the kernel of
the differential dF), i.e. the (m — n)-dimensional subspace of R™ given
by K, = {v e R"|dF,-v = 0}. Let m, : R™ — R™" be a linear map
such that m|x, : K, — R™™" is bijective, 7p|x+ = 0 and define the
map G, : U — R" x R™™" by

Gy s 2 (F(a), my(x).
Then the differential (dG,), : R™ — R™ of G,, with respect to the
decompositions R™ = K pL @ K, and R™ = R" ® R™", is given by
dF, 1 0
(dGy)p = [ %Kp } )

hence bijective. It now follows from the inverse function theorem that
there exist open neighbourhoods V), around p and W, around G,(p)
such that ép = Gplv, : V, = W, is bijective, the inverse G’;l W, =V,
is C7, d(G; Ve, m) = (dGy), " and d(G,1), is bijective for all y € W,
Now put U, = F~*({¢}) NV}, then

U, =G, (({a} x R™) N W,)

Tp

so if m: R™ x R™™™ — R™™" is the natural projection onto the second
factor, then the map

Tp =10 Gply : U, — ({¢} x R™™) N W, - R™™"

is a local chart on the open neighbourhood Up of p. The point ¢ € F(U)
is a regular value so the set

A={(Up7,)|p € F'({a})}
is a C"-atlas for F~1({q}). O

Applying the implicit function theorem, we obtain the following
interesting examples of the m-dimensional sphere S™ and its tangent
bundle T'S™ as differentiable submanifolds of R™*! and R?™*2, respec-

tively.
Example 2.17. Let F': R™"! — R be the C*-map given by
F (o Pmy1) = DL+ + Doy
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Then the differential dF, of F at the point p € R™! is given by
dF, =2-p,so

dF, - (dF,)" =4p]* € R.
This means that 1 € R is a regular value of F', so the fibre

S"={peR"||pf =1} = F'({1})
of F' is an m-dimensional submanifold of R™*!. This is the m-dimensional
standard sphere introduced in Example [2.5]
Example 2.18. Let [/ : R™*! x R™*! — R? be the C¥-map given
by
F:(p,v) = ((Ipf* = 1)/2, (p, ).
Then the differential dF|, .y of F' at (p,v) satisfies
dF, _ p 0 c R2x(2m+2)

(pv) vop :

A simple calculation shows that
2
det[dF - (dF)] = det | [P {p.v) ]:1+v2>0
ar - ar)=ae |y ] =140
on the fibre F~1({0}). This means that
F7H({0}) = {(p,v) € R™ x R™"! | |p]* = 1 and (p,v) = 0}

is a 2m-dimensional submanifold of R?*"*+2. We will later see that the
set TS™ = F~1({0}) is what is called the tangent bundle of the
m-~dimensional sphere S™.

We now employ the implicit function theorem to construct the im-
portant orthogonal group O(m) as a submanifold of the linear space

Rm)(m

Example 2.19. Let R™*™ be the m?-dimensional vector space of
real m x m matrices and Sym(R™) be its linear subspace consisting of
the symmetric matrices given by

Sym(R™) = {x € R™™ | 2" = z}.
A generic element z € Sym(R™) is of the form

i1 - Tim

Tm1 ' Tmm

where xy; = xy, for all k,1 =1,2,...m. With this at hand, it is easily
seen that the dimension of the subspace Sym(R™) is m(m + 1)/2.
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Let F: R™*™ — Sym(R™) be the map defined by
F:zwa o
Then the inverse image O(m) = F~'({e}) of F clearly satisfies
F'({e}) = {z e R™"™|z'z = e}.

Note that the set O(m) is closed and bounded in R™*™ 2 R™ hence
compact.
If v: I — R™™is a curve in R™*™ such that v(0) = = and
4(0) = X, then
d

AF(X) = -(Fo3()]ems

d
= L) (5w
= (4(5)" - v(s) +7(s)" - (5))ls=0
= X'z+2" X,
This means that for arbitrary elements 2 € O(m) and X € R™*™ we
have

dFy(zX) = (zX)'-z+2" (2X)
= X'2t-o42'- 2 X
X'+ X,

It is a well know fact from linear algebra, that for the linear vector

space R™*™ of real m X m matrices we have the direct sum
Skew(R™) @ Sym(R™)

i.e. every matrix X € R™*™ has a unique decomposition X =Y + Z
where

Y =3(X — X') € Skew(R™) and Z = (X + X") € Sym(R"™).

This means that dF,(zY) = 0, dF,(xZ/2) = Z and shows that the
differential dF, is surjective, so the identity matrix e € Sym(R™) is a
regular value for F'.

It is now a direct consequence of Theorem that if m > 2 then
O(m) is a submanifold of R™*™ of dimension m(m — 1)/2. We will
later see that the set O(m) can be equipped with a group structure
and is then called the orthogonal group.

The concept of a differentiable map U — R", defined on an open
subset of R™, can be generalised to mappings between manifolds. We
will see that the most important properties of these objects, in the
classical case, are also valid in the manifold setting.
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Definition 2.20. Let (M™, Ay;) and (N, Ay) be C"-manifolds.
A map ¢ : M — N is said to be differentiable of class C" at a point
p € M if there exist local charts (U, z) € Ay around p and (V,y) € Ay
around ¢ = ¢(p) such that the transition map

yopo $_1|x(UO¢*1(V)) cx(UN gf)_l(V)) CR™ -5 R

is of class C". The map ¢ is said to be differentiable of class C" if it
is differentiable of class C" at every point p € M.

A differentiable map +v : I — M, defined on an open interval I of
R, is called a differentiable curve in M. A real-valued differentiable
map f: M — R is called a differentiable function on M. The set
of smooth functions defined on M is denoted by C*(M).

Remark 2.21. It should be noted that, in Definition [2.20 the
differentiablility of ¢ : M; — M, at a point p € M is independent of
the choice of the local charts (U, z) and (V,y).

It is an easy exercise, using Definition [2.20] to prove the follow-
ing result concerning the composition of differentiable maps between
manifolds.

Proposition 2.22. Let (M, Ay), (M, Ay), (Ms, A3) be C™-mani-
folds and ¢ : (M1, Ay) — (M, As), ¢ : (Ma, Ay) — (Ms, A3) be
two differentiable maps of class C". Then the composition ) o ¢ :
(Ml,fll) — (Mg,./zlg) is a differentiable map of class C".

PROOF. See Exercise 2.5 O

Definition 2.23. Two manifolds (M, Ay) and (N, Ay) of class
C" are said to be diffeomorphic if there exists a bijective C"-map
¢ : M — N such that the inverse ¢~ : N — M is of class C". In
that case the map ¢ is called a diffeomorphism between (M, ./ZlM)
and (N, Ay).

Proposition 2.24. Let (M, A) be an m-dimensional C"-manifold
and (U, x) be a local chart on M. Then the bijective continuous map
x:U — x(U) CR™ is a diffeomorphism.

PROOF. See Exercise 2.6l OdJ

It can be shown that the 2-dimensional unit sphere S?, in the Eu-
clidean R?, and the Riemann sphere C are diffecomorphic, see Exercise

2.7

Definition 2.25. For a differentiable manifold (M, .A) we denote
by D(M) the set of all its diffeomorphisms. If ¢,¢ € D(M) then
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it is clear that the composition ) o ¢ and the inverse ¢! are also
diffeomorphisms. The operation is clearly associative and the identity
map is its neutral element. This means that the pair (D(M), o) forms

~

a group, called the diffeomorphism group of (M, A).

Definition 2.26. Two C"-structures ./il and /lg on the same topo-
logical manifold M are said to be different if the identity map idyy
(M, Ay) — (M, Ay) is not a diffeomorphism.

It can be seen that even the real line R carries infinitely many
different differentiable structures, see Exercise 2.8

Deep Result 2.27. Let (M, Ay) and (N, Ay) be differentiable
manifolds of class C" of the same dimension m. If M and N are home-
omorphic as topological spaces and m < 3 then (M, flM) and (N, AN)
are diffeomorphic.

The following remarkable result was proven by M. A. Kervaire and
J. W. Milnor in their celebrated paper Groups of homotopy spheres I,
Annals of Mathematics 77 (1963), 504-537.

Deep Result 2.28. The 7-dimensional sphere S™ has exactly 28
different smooth differentiable structures.

The next useful statement generalises a classical result from the real
analysis of several variables.

Proposition 2.29. Let (N1, A;) and (N, Ay) be two differentiable
manifolds of class C" and My, My be submanifolds of N1 and N, re-
spectively. If ¢ : Ny — Ny is a differentiable map of class C" such
that ¢(My) is contained in My then the restriction ¢|y, = My — My is
differentiable of class C".

PROOF. See Exercise 2.9 O

Example 2.30. The above Propositon [2.29| provides the following
list of interesting examples of differentiable maps between the manifolds
which we have introduced above.

(i) ¢1: R = ST CC, ¢y : t €™,

(i) ¢ : S C R > $ C R 6 ¢ (w,1,2) = (2,9, 2,0),

(iii) ¢3: 5% C C?* — S* C CxR, @3 : (21, 22) = (2217, [21]*—|22]?),
iv) ¢4 : RN\ {0} — S™ C R™ ¢y 0w — x/|2],

¢5: S™ — RP™ ¢5: x> [z].

g = P50 ¢g : RN\ {0} = RP™, ¢ : v — [2/]2]],
¢7:0(m) = Rz x41.
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In differential geometry, we are interested in manifolds carrying a
group structure compatible with their differentiable structures. Such
manifolds are named after the famous mathematician Sophus Lie (1842-
1899) and will play an important role throughout this work. As a ref-
erence on this topic we recommend the wonderful book: A. W. Knapp,
Lie Groups Beyond an Introduction, Birkh&user (2002).

Definition 2.31. A Lie group is a smooth manifold G with a

group structure - such that the map p: G x G — G with
p:(pg)—p-q
is smooth.

Example 2.32. Let (R™,+,-) be the m-dimensional real vector
space equipped with its standard differential structure. Then (R™,+)
with p: R™ x R™ — R given by

p:(pg)—p—q
is a Lie group.

Definition 2.33. Let (G, -) be a Lie group and p be an element of
G. Then we define the left translation L, : G — G of G by p with

L,:q—p-q.

Proposition 2.34. Let G be a Lie group and p be an element of
G. Then the left translation L, : G — G is a smooth diffeomorphism.

PROOF. See Exercise R.11] O

Proposition 2.35. Let (G,-) be a Lie group and K be a submani-
fold of G which is a subgroup. Then (K,-) is a Lie group.

PROOF. The statement is a direct consequence of Definition
and Proposition [2.29] O

Example 2.36. Let (C*,-) be the set of non-zero complex num-
bers equipped with its standard multiplication. Then (C*,-) is a Lie
group. The unit circle (S!,-) is an interesting compact Lie subgroup
of (C*,-). Another subgroup is the set of the non-zero real numbers
(R*,-) containing the positive real numbers (R, ) as a subgroup.

Definition 2.37. Let (G,-) be a Lie group and V be a finite-
dimensional real vector space of dimension n. Then an n-dimensional
linear representation of GG on V' is a map

p: G — Aut(V)

18



into the space of automorphisms of V i.e. the invertible linear endo-
morphisms such that for all g, h € G we have

p(g-h) = plg) o p(h).
Here o denotes the composition in Aut(V). The linear representation
p: G — Aut(V) is said to be faithful if it is injective.

Remark 2.38. It should be noted that for a given basis for the
vector space V' and an element g € G the automorphism p(g) € Aut(V)
can be represented by an invertible matrix with respect to this basis
and then the operation o is just the standard matrix multiplication.

Example 2.39. The Lie group of non-zero complex numbers (C*, -)
has a well known linear representation p : C* — Aut(R?) on R? given
by

. a —b
pra-+ib— {b a]

This is obviously injective and it respects the standard multiplicative
structures of C* and R?*? since

pla+i) - (x+iy)) = p((ax —by) +i(br + ay))
_ {az —by —(bx+ ay)]
br +ay ax —by

S R
— pla+ib) * p(z + iy).

As an introduction to Example [2.41] we now play the same game in
the complex case.

Example 2.40. Let p : C? — C?*2 be the injective real linear map

given by
( ) z —w
prlzw)= |-

Then an easy calculation shows that the following is true

21 —wy Zg  —W2
21, w1) * p(z9,we) = _ | % _
p(z1, wi) * p(z2, wo) [wl z } LU? %
. 2129 — wlwz —(1@122 + leg)
W12 + Z1W2 2129 — W1Wsq
= p<212’2 — 11_)1'11]2, W12 + leg).
We now introduce the quaternions H and the three dimensional
sphere S® which carries a natural group structure.
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Example 2.41. Let H be the set of quaternions given by
H = {(z,w) € C*|z,w € C}.
We equip H with an addition, a multiplication and the conjugation
satisfying
(1) (21, w1) + (22, w2) = (21 + 22, w1 + w3),
z

)
(ii) (z1,w1) - (( 2, W) = (2122 — WiWa, W1 22 + Z1W2),

(i) (2,w) = (2, —w).

These extend the standard operations on C as a subset of H. It is easily
seen that the non-zero quaternions (H*,-) form a Lie group. Then the
map p : H* — Aut(C?) with

p:(2,w) = [fu _ﬂ

is a linear representation of H* on C2. On H we define the quaternionic
scalar product

H x H — H, (p.q)—=p-q

and a real-valued norm given by [p|> = p - p. Then the 3-dimensional
unit sphere

S ={peH||pl =1}

in H =~ C?2 =~ R*, with the restricted multiplication, forms a compact
Lie subgroup (S3,-) of (H*,-). They are both non-abelian.

We will now introduce some of the classical real and complex matrix
Lie groups.

Example 2.42. Let Nil be the subset of R3*3 given by

1 z =z
Nil={|0 1 y| e R*3|z,y,z € R}
001

Then Nil has a natural differentiable structure determined by the global
coordinates ¢ : Nil — R? with

= (x,y, 2).

-
o O =
O~ 8
— < W

It is easily seen that if *x is the standard matrix multiplication, then
(Nil, %) is a Lie group.
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Example 2.43. Let Sol be the subset of R**3 given by

e 0 =
Sol={[0 e* y| eR¥>|x,y,2z<cR}.
0 0 1

Then Sol has a natural differentiable structure determined by the global
coordinates ¢ : Sol — R3 with

e 0 =z
610 e y| o (2 2).
0O 0 1

It is easily seen that if *x is the standard matrix multiplication, then
(Sol, %) is a Lie group.

Example 2.44. The set of invertible real m x m matrices
GL,,(R) = {z € R™™ | detx # 0},
equipped with the standard matrix multiplication, has the structure of
a Lie group. It is called the real general linear group and its neutral
element e is the identity matrix. The subset GL,,(R) of R™*™ is open
so dim GL,,(R) = m?.
As a subgroup of GL,,(R) we have the real special linear group
SL,,(R) given by
SL,,(R) = {z € R™™ | det z = 1}.
We will show in Example that the dimension of the submanifold
SL,,(R) of R™™ is m? — 1.
Another subgroup of GL,,(R) is the compact orthogonal group
O(m) = {z € R™™ |2z = e}.

As we have already seen in Example[2.19] this is a submanifold of R™*™
of dimension of m(m — 1)/2.

As a subgroup of O(m) and even SL,,(R) we have the compact
special orthogonal group SO(m) which is defined as

SO(m) = O(m)NSL,,(R)
= {z e R™" |2’z = e and detx = 1}.
It can be shown that O(m) is diffeomorphic to SO(m) x O(1), see

Exercise Note that O(1) = {£1} so O(m) can be seen as double
cover of SO(m). This means that

dim SO(m) = dim O(m) = m(m — 1) /2.
To the above mentioned real Lie groups we have their following
complex close relatives.
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Example 2.45. The set of invertible complex m x m matrices
GL,,(C) = {z € C™™| det z # 0},

equipped with the standard matrix multiplication, has the structure of
a Lie group. It is called the complex general linear group and its
neutral element e is the identity matrix. The subset GL,,(C) of C"™*™
is open so dim GL,,(C) = 2m?.

As a subgroup of GL,,(C) we have the complex special linear
group SL,,(C) given by

SL,,(C) = {z € C™™| detx = 1}.

The dimension of the submanifold SL,,(C) of C™*™ is 2(m? — 1).

Another subgroup of GL,,(C) is the compact unitary group U(m)
given by

U(m) ={z € C™"™|z'2 = e}.

Calculations similar to those for the orthogonal group show that the
dimension of U(m) is m?.

As a subgroup of U(m) and SL,,(C) we have the compact special
unitary group SU(m) which is defined as

SU(m) = U(m)nSL,,(C)
= {zeC™™|z'z=cand detz=1}.
It can be shown that U(1) is diffeomorphic to the circle S' and that

U(m) is diffeomorphic to SU(m) x U(1), see Exercise[2.10, This means
that dim SU(m) = m? — 1.

For the rest of this work we will assume, when not stating
otherwise, that all our manifolds and maps are smooth i.e. in
the C*°-category.
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Exercises

Exercise 2.1. Find a proof of Proposition 2.9,

Exercise 2.2. Find a proof of Proposition [2.11]

Exercise 2.3. Let S! be the unit circle in the complex plane C
given by S' = {z € C||z|> = 1}. Use the maps z : C\ {i} — C and
y:C\ {—i} — C with

14z 142
— Yz —
141z 142
to show that S! is a 1-dimensional submanifold of C = R2.

A A

Exercise 2.4. Use the implicit function theorem to show that the
m-dimensional torus

" = {(z,y) €ER" X R™[af +yi = =5, +y,, = 1}
{zeC|af’ = = |z|* =1}
is a differentiable submanifold of R?™ = C™,

Exercise 2.5. Find a proof of Proposition [2.22]

Exercise 2.6. Find a proof of Proposition [2.24]

Exercise 2.7. Prove that the 2-dimensional sphere S? as a djffer—
entiable submanifold of the standard R* and the Riemann sphere C are
diffeomorphic.

I

Exercise 2.8. Equip the real line R with the standard topology
and for each odd integer k € Z* let A; be the C*-structure defined on
R by the atlas

A = {R, ) |z : p — p"}.
Show that the differentiable structures flk are all different but that the
differentiable manifolds (R, .A) are all diffeomorphic.

Exercise 2.9. Find a proof of Proposition [2.29

Exercise 2.10. Let the spheres S!, S% and the Lie groups SO(n),
O(n), SU(n), U(n) be equipped with their standard differentiable
structures. Use Proposition to prove the following diffeomorphisms

S'~80(2), S*=~=SU(2),
SO(n) x O(1) = 0O(n), SU(n) x U(1) ZU(n).
Exercise 2.11. Find a proof of Proposition [2.34]
Exercise 2.12. Let (G, *) and (H, -) be two Lie groups. Prove that
the product manifold G x H has the structure of a Lie group.
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CHAPTER 3

The Tangent Space

In this chapter we introduce the notion of the tangent space 7, M
of a differentiable manifold M at a point p in M. This is a vector space
of the same dimension as M. We first study the standard R™ and show
how a tangent vector v at a point p € R™ can be interpreted as a first
order linear differential operator, annihilating constants, when acting
on real-valued functions locally defined around p. Then we generalise
to the manifold setting. To explain the notion of the tangent space
we give several explicit examples. Here the classical Lie groups play
an important role. We then conclude this chapter by introducing the
notions of an immersion, an embedding and a submersion.

Let R™ be the m-dimensional real vector space with its standard
differentiable structure. If p is a point in R™ and v : I — R™ is a
C'-curve such that v(0) = p, then the tangent vector

oy g 1) = 7(0)
4(0) = lim —

t—0
of v at p is an element of R™. Conversely, for an arbitrary element v
of R™ we can easily find a curve v : I — R™ such that y(0) = p and
4(0) = v. One example is given by

y:t—=p+t-v.
This shows that the tangent space i.e. the set of tangent vectors at
the point p € R™ can be identified with R™.

We will now describe how the first order linear differential opera-
tors, annihilating constants, can be interpreted as tangent vectors. For
a point p € R™ we denote by &(p) the set of differentiable real-valued
functions defined locally around p. Then it is well known from mul-
tivariable analysis that if v € R™ and f € €(p) then the directional
derivative 0,f of f at the point p in the direction of v satisfies

p+tv)— fip
Tt )2 T0) _ tgraa ), o)
Furthermore, the operator 0 has the following properties
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Ou(f-9) = 0uf-g(p)+ fp)- g,
Onvtpw)f = A 0uf+p-0uf,
for all \,p € R, v,w € R™ and f, g € £(p).
Motivated by the above well-known classical results, we now present

the following.

Definition 3.1. For a point p € R™, let T,R™ be the set of first
order linear differential operators at p annihilating constants
i.e. the set of mappings « : e(p) — R such that

(i) a(A-f+p-g)=X-a(f) +p-afg),

(i) a(f - g9) = a(f) - g(p) + f(p) - (g),
for all \, p € R and f,g € e(p).

The set of first order linear differential operators, annihilating con-
stants, carries a natural structure of a real vector space. This is simply
given by the addition + and the multiplication - by real numbers sat-
isfying

(a+6)(f) = alf)+B5(f),
(A-a)(f) = A-alf),
for all o, 8 € T,R™, f € e(p) and X\ € R.

The following result provides an important identification between
R™ and the tangent space T,R"™ as defined above.

Theorem 3.2. For a point p € R™ the map & : R — T,R™
defined by ® : v — 0, is a linear vector space isomorphism.

PROOF. The linearity of the map ® : R™ — T,R™ follows directly
from the fact that for all \, p € R, v,w € R™ and f € £(p) we have

a(/\-er,u-w)f =A- avf T pe awf

Let v,w € R™ be such that v # w. Choose an element v € R™ such
that (u,v) # (u,w) and define f : R™ — R by f(z) = (u,x). Then

O f = (u,v) # (u,w) = 0w f
S0 0, # Oy. This proves that the linear map @ is injective.

Let a be an arbitrary element of T,R™. For k = 1,...,m let the
real-valued function 2 : R™ — R be the natural projection onto the
k-th component given by

A

Tp (1, ) > T
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and put vy = a(Zy). For the constant function 1: (z1,...,2,) — 1 we
have

al)=a(l-1)=a(l) - 1+1-a(l) =2-a(l),
so a(1) = 0. By the linearity of « it then follows that a(c) = 0 for any
constant ¢ € R. Let f € ¢(p) and following Lemma [3.3] locally write

+Z Tr(x ) - Yr(x),

where 1y, € e(p) with

%@Z%ﬁ)

We can now apply the differential operator o € T, R™ on the function
f and yield

a(f) = a(f(p)+ D> _(x—pi) - tn)

=1
= a(f(p) + > al@r —pe) - te(p) + > ( ()

=1 k=1

= (v, (gradf)(p))

= avfa
where v = (vq,...,0,) € R™. This means that &(v) = 9, = « so
the linear map ® : R™ — T,R™ is surjective and hence a vector space
isomorphism. O

Lemma 3.3. Let p be a point in R™ and f : U — R be a dif-
ferentiable function defined on an open ball around p. Then for each
k= 1,2,...,m, there exist functions ¢y : U — R such that for all
relU

of

83:k

(p) + Y (wx = pi) - ilx) and Pi(p) = 5~ (p).

Proor. It follows from the fundamental theorem of calculus that

f@) - ) = /‘& (0 + ta — )it

Z(xk ) /8kp+t(3:— p))dt.

k=1

27



The statement then immediately follows by setting

=/ g—f(pﬂ(ﬂf—p))dt-
0o Ok
O

As a direct consequence of Theorem we now have the following
important result.

Corollary 3.4. Let p be a point in R™ and {ex |k =1,...,m} be
a basis for R™. Then the set {0, |k = 1,...,m} is a basis for the
tangent space T,R™ at p.

Remark 3.5. Let p be a point in R™, v € T,R™ be a tangent
vector at p and f : U — R be a C'-function defined on an open subset
U of R™ containing p. Let v : I — U be a curve such that v(0) = p
and 4(0) = v. Then the identification given by Theorem tells us
that v acts on f by

o) = () = (v, smadfy) = df(3(0)) = (7 016 lco.

This implies that the real number v(f) is independent of the choice of
the curve « as long as 7(0) = p and 4(0) = v.

We will now employ the ideas presented above to generalise to the
manifold setting. Let M be a differentiable manifold and for a point
p € M let (p) denote the set of differentiable real-valued functions
defined on an open neighborhood of p.

Definition 3.6. Let M be a differentiable manifold and p be a
point in M. A tangent vector X, at p is a map X, : e(p) — R such
that

(i) Xp(A- f+u 9) = A Xp(f) + - Xp(9),
(i) Xp(f - 9) = X,(f) - 9(p) + f(p) - Xp(9),

forall A\, u € Rand f, g € (p). The set of tangent vectors at p is called
the tangent space at p and denoted by 7, M.

The tangent space T,M of M at p has a natural structure of a real
vector space. The addition + and the multiplication - by real numbers
are simply given by

(Xp +Yp)(f) = Xp(f) +Y5(/),
M- X)) = A-X,(6),
for all X,,,Y, € T,M, f € e(p) and A € R.
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We have not yet defined the differential of a map between mani-
folds, see Definition but still think that the following remark is
appropriate at this point. This will make it possible for us to explic-
itly determine the tangent spaces of some of the manifolds introduced
earlier.

Remark 3.7. Let M be an m-dimensional manifold and (U, z) be
a local chart around p € M. Then the differential

d:L“p : TpM — Tx(p)Rm
is a bijective linear map such that for a given element X, € T, M there
exists a tangent vector v in T,,)R™ = R™ such that dx,(X,) = v. The
image z(U) is an open subset of R™ containing z(p) so we can easily
find a curve ¢ : I — x(U) with ¢(0) = z(p) and ¢(0) = v. Then the
composition v = 7t oc : I — U is a curve in M through p since
7(0) = p. The element d(xz "), (v) of the tangent space T, M denoted

by 4(0) is called the tangent to the curve v at p. It follows from the
relation

¥(0) = d(x_1>x(p)(v) =X
that the tangent space T, M can be thought of as the set of all tangents
to curves through the point p.

If f:U — Ris a C'-function defined locally on U then it follows
from Definition [3.14] that

Xp(f) = (dzp(X,p))(f o a7t
d -1
= E(foac o ¢(t))]i=o

= 2 orles

It should be noted that the real number X,(f) is independent of the
choice of the local chart (U, z) around p and the curve ¢ : I — z(U) as
long as v(0) = p and #(0) = X,,.

We are now ready to determine the tangent spaces of some of the
differentiable manifolds that were introduced in Chapter 2 We start
with the m-dimensional unit sphere S™ in R™*!. This should be seen
as an introduction to our Example |3.10

Example 3.8. Let v : I — S™ be a differentiable curve into the
m-dimensional unit sphere in R™*! with v(0) = p and 4(0) = X. Then
the curve satisfies

(v(t),7(t) =1
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and differentiation yields

(1(8),7(8)) + (v(8),7(2)) = 0.

This means that (p, X) = 0, so every tangent vector X € 7,5™ must
be orthogonal to p. On the other hand if X # 0 satisfies (p, X) = 0
then v : R — S™ with

vt cos(t|X]) - p+ sin(t| X|) - X/|X|
is a differentible curve into S™ with v(0) = p and 4(0) = X. This
shows that the tangent space 7,5™ is actually given by
T,5™ = {X € R™ | {p, X) = 0}.

For the following we need the next well known result from matrix
theory.

Proposition 3.9. Let C™*™ be the set of complex m x m matrices.
Then the exponential map Exp : C™*™ — C™*™ is defined by the
convergent power series

Exp: Z — Z R
k=0

If Z,W are elements of C™*™, then the following statements hold
(i) Exp(Z') = Exp(2)",
(ii) Exp(Z) = Exp(Z),
(11i) det(Exp(Z)) = exp(trace Z),
() if ZW = W Z then Exp(Z + W) = Exp(Z) - Exp(W).

PROOF. See Exercise [3.2 O

We are now equipped with the necessary tools for determining the
tangent space T,0(m) of the orthogonal group O(m) at the neutral
element e € O(m).

Example 3.10. Let v : I — O(m) be a differentiable curve into
the orthogonal group O(m) such that v(0) = e and 4(0) = X. Then
7v(s)! - v(s) = e for all s € I and differentiation gives

0 = (5(s)"-v(s) + ()" (5))]s=o0
= Xl.e+e X
= X'+ X
This implies that each tangent vector X € T.O(m) of the orthogonal
group O(m) at the neutral e is a skew-symmetric matrix.
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On the other hand, for an arbitrary skew-symmetric matrix X €
R™ ™ we define the curve A: R — R"™*™ by A : s +— Exp(sX). Then

A(s) - A(s) = Exp(sX)'-Exp(sX)
= Exp(sX")-Exp(sX)
= Exp(s(X'+ X))
= Exp(0)

X
X

|
o

This shows that A is a curve in the orthogonal group, A(0) = e and
A(0) = X, so X is an element of the tangent space T,O(m). Hence

T.0(m) = {X e R™™| X' + X = 0}.

It now immediately follows that the dimension of the tangent space
T.0(m) is m(m — 1)/2. We have seen in Example that this is
exactly the dimension of the orthogonal group O(m).

According to Exercise [2.10, the orthogonal group O(m) is diffeo-
morphic to {£1} x SO(m) so dim SO(m) = dim O(m). Hence

7.80(m) = T.O(m) = {X € R™™ | X' + X = 0}.

The real general linear group GL,,(R) is an open subset of R™*™ so
its tangent space 7, GL,,(R) is simply R™*™ at any point p € GL,,(R).

The tangent space T,SL,,(R) of the special linear group SL,,(R)
at the neutral element e € SL,,(R) can be determined as follows.

Example 3.11. If X is a matrix in R™*™ with trace X = 0 then
we define the differentiable curve A : R — R™*™ by

A s — Exp(sX).
Then A(0) = e, A(0) = X and
det(A(s)) = det(Exp(sX)) = exp(trace(sX)) = exp(0) = 1.

This shows that A is a curve in the special linear group SL,,(R) and
that X is an element of the tangent space T,.SL,,(R) of SL,,(R) at the
neutral element e. Hence the (m? — 1)-dimensional linear space

{X e R™™ | trace X =0}

is contained in the tangent space T.SL,,(R) of SL,,(R) at the neutral
element e.

On the other hand, the curve B : I — GL,,(R) given by
B :s+— Exp(s-e) =exp(s)-e
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is not contained in SL,,(R) so the dimension of 7.SL,,(R) is at most
m? — 1 = dim GL,,,(R) — 1. This shows that

T.SL,,(R) = {X € R™ ™ |trace X = 0}.
With the above arguments we have now proven the following result.

Theorem 3.12. Let e be the neutral element of the classical real Lie
groups GL,,(R), SL,,(R), O(m), SO(m). Then their tangent spaces
at e are given by

T.GL,(R) = R™™

T SLm(R) = {X € R™"™|trace X = 0},
O(m) = {XeR™™| X'+ X =0},

T SO(m) = T.0(m)=T.0(m)NT.SL,,(R).

For the classical complex Lie groups, similar methods can be em-
ployed to prove the following result.

Theorem 3.13. Let e be the neutral element of the classical com-
plex Lie groups GL,,(C), SL,,(C), U(m), SU(m). Then their tangent
spaces at e are given by

T.GL,,(C) = C™™,
TSLm((C) = {Z e C™™ |trace Z = 0},
U(m) = {ZeC™™|Z'+Z =0},
TeSU( ) = T.U(m)NT.SL,,(C).

PROOF. See Exercise [3.4] O

We now introduce the notion of the differential of a map between
manifolds. This will play an important role in what follows.

Definition 3.14. Let ¢ : M — N be a differentiable map between
differentiable manifolds. Then the differential d¢, of ¢ at a point p
in M is the map d¢,, : T,M — T, N such that for all X, € T,M and

f € e(o(p)) we have
(dop(Xp))(f) = Xp(f 0 §).

Remark 3.15. Let M and N be differentiable manifolds, p € M
and ¢ : M — N be a differentiable map. Further let v : I — M be a
curve in M such that v(0) = p and §(0) = X,,. Let ¢: I — N be the
curve ¢ = ¢ oy in N with ¢(0) = ¢(p) and put Yy, = ¢(0). Then it
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is an immediate consequence of Definition that for each function
f € e(¢p(p)), defined locally around ¢(p), we have

(d¢p(Xp>)(f) = Xp(fo¢)

= L(Fodortlms

= L (fo el

= Yo (f)-
Hence do,(X,) = Yy, or equivalently, d¢,(7(0)) = ¢(0). This state-
ment should be compared with Remark [2.12

The following result describes the most important properties of the
differential, in particular, the so called chain rule in (iii).

Proposition 3.16. Let ¢ : M7 — My and v : My — M;z be dif-
ferentiable maps between differentiable manifolds. Then for each point
p € My we have

(i) the map do, : T,My — Ty My is linear,
(ii) if idpy, - My — M,y is the identity map, then d(idyy, ), = idr,nr, ,
(iti) d(p 0 @)y = dipg(p) © dbyp.
PRrOOF. The statement (i) follows immediately from the fact that
for \,u e R, X,,Y, € T,M; and f € e(¢(p)) we have
dgpy(N - Xp +u-Y)(f) = A Xp+p-Y)(foo)
= A X(fog)+pu-Yy(foo)
A= dep(Xp)(f) + - dop(Yy) ()
The claim in (ii) is obvious. For (iii) we have: If X, € T,M; and
[ €e(@od(p)), then
(dibo(p) 0 dp)(Xp)(f) = (dibs(p)(dep(Xp)))(f)
= (dﬁép(Xp))(fO@b)
= X,(foroog)
(d(¢ 0 ¢)p(Xp))(f)-
This proves the last statement. O

As an immediate consequence of Proposition [3.16| we have the fol-
lowing interesting result generalising the corresponding statement in
multivariable analysis.

Corollary 3.17. Let ¢ : M — N be a diffeomorphism with the
inverse 1 = ¢~' : N — M. If p is a point in M then the differential
doy, : TyM — Ty N of ¢ at p is bijective and satisfies (dp,) ™" = dibyp).-
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PRrOOF. The statement is a direct consequence of the following re-
lations

dg(p) © dopp = d(p 0 @), = d(idn), = idm,mr,
dgy © dipg(p) = d(¢ 0 Y)gp) = d(idn)s) = iz, N
O]

We are now ready to prove the following important result. This
is of course a direct generalisation of the corresponding statement in
Gaussian geometry i.e. the classical theory of surfaces in R3.

Theorem 3.18. Let M™ be an m-dimensional differentable mani-
fold and p be a point in M. Then the tangent space T,M of M at p is
an m-dimensional real vector space.

PrOOF. Let (U, x) be a local chart on M. Then Proposition [2.24]
tells us that the map « : U — x(U) is a diffeomorphism. This implies
that the linear differential dx, : T,M — T, R™ is a vector space
isomorphism. The statement now follows directly from Theorem

and Corollary [3.17] O
Proposition 3.19. Let M™ be a differentiable manifold, (U, z) be
a local chart on M and {ex |k = 1,...,m} be the canonical basis for

R™. For an arbitrary point p in U we define the differential operator
(:2-), in T,M by

oxy,
(), 1P ) = o) ot

Then the set
0

{(a—)p|k:1,2,...,m}

L
is a basis for the tangent space T,M of M at p.

Proo¥r. The local chart x : U — z(U) is a diffeomorphism and the
differential (dz™"),() : ToR™ — T,M of the inverse 2! : 2(U) — U
satisfies

(A2 o) (0e)(f) = e (f 0z~ ")(x(p))

0
= (8—3%)1,(]‘ )
forall f € e(p). The statement is then a direct consequence of Corollary
3.4l O

The rest of this chapter is devoted to the introduction of special
types of differentiable maps. They are the immersions, the embeddings
and the submersions.
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Definition 3.20. For positive integers m,n € Z* with m < n, a
differentiable map ¢ : M™ — N™ between manifolds is said to be an
immersion if for each p € M the differential d¢, : T,M — Ty, N
is injective. An embedding is an immersion ¢ : M — N which is a
homeomorphism onto its image ¢(M).

Example 3.21. For positive integers m,n with m < n we have the
inclusion map ¢ : R™*! — R"*! given by

¢ (21, s Tmyr) = (T1, -, T, 0,00, 0).

The differential d¢, at x is injective since d¢,(v) = (v,0). The map
¢ is obviously a homeomorphism onto its image ¢(R™"!) hence an
embedding. It is easily seen that even the restriction ¢|gm : S™ — S™
of ¢ to the m-dimensional unit sphere S™ in R™"! is an embedding.

Definition 3.22. Let M be an m-dimensional differentiable man-
ifold and U be an open subset of R™. An immersion ¢ : U — M is
called a local parametrisation of M. If the immersion ¢ is surjective
then it is said to be a global parametrisation.

Remark 3.23. If M is a differentiable manifold and (U,z) is a
local chart on M, then the inverse 27! : z(U) — U of x is a global
parametrisation of the open subset U of M.

Example 3.24. Let S* be the unit circle in the complex plane C.
For a non-zero integer k € Z define ¢y, : S' — C by ¢, : z +— z*. For a
point w € St let 7, : R — S be the curve with 7, : t + we®. Then
7Yw(0) = w and 4,,(0) = dw. For the differential of ¢ we have

: d d ; 4
(de)u((0)) = (8 © u(t)) =0 = (W e™)]io = kiw® # 0.
This shows that the differential (dgy), : TwS' = R — T,xC = R? is

injective, so the map ¢ is an immersion. It is easily seen that ¢ is an
embedding if and only if £ = +1.

Example 3.25. Let ¢ € S® be a quaternion of unit length and
¢y : ST — S? be the map defined by ¢, : z — ¢qz. For w € S! let
Yo : R — ST be the curve given by 7, (t) = we. Then 7,(0) = w,
Y (0) = iw and ¢y (7, (t)) = qwe™. By differentiating we yield

. d d ; :
164(30(0)) = 5 (643000 = 5 (060 = givw.
Then |d¢,(7,(0))| = |qwi| = |g||w|] = 1 # 0 implies that the differen-
tial d¢, is injective. It is easily checked that the immersion ¢, is an
embedding.
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In Example[2.6) we have introduced the real projective space RP™ as
an abstract manifold. In the next example we construct an interesting
embedding of RP™ into the real vector space Sym(R™!) of symmetric
real (m + 1) x (m + 1) matrices.

Example 3.26. Let S™ be the m-dimensional unit sphere in R™,
For a point p € S™, let

l,={)N-peR" | X eR}
be the line, through the origin, generated by p. Further let
Rp . Rerl N Rerl

be the reflection about the line £,. Then R, is an element of End(R™!)
i.e. the set of linear endomorphisms of R™*! which can be identified
with the set RO"TDX(m+D) of real (m+1) x (m+1) matrices. It is easily
checked that the reflection R, about the line ¢, is given by

Ry :q = 2(p,q)p —q.
It then immediately follows from the relation

Ry(q) =2(p,q)p—q=2p(p,q) —q=(2p-p' —e€)-q

that the symmetric matrix in R(m+1)x(m+1)

corresponding to R, is just
2p-p' —e).

We will now show that the map ¢ : S™ — Sym(R™"!) given by
¢:p— R,

is an immersion. Let p be an arbitrary point on S™ and o, 3 : I — S™
be two curves meeting at p i.e. a(0) = p = 3(0), with X, = &(0) and
Y, = B(0). For v € {a, 5} we have

oyt (g 2{(q,v()(t) —q)
, d
(d9),(7(0)) = —(do(t))]i=o
= (¢~ 2(q,¥(0))7(0) +2 (g, 7(0))7(0)).
This means that

dop(X,) = (g 2(q, Xp)p +2(q,p)X})
and
dop(Yp) = (q = 2(q,Y,)p +2(q,p)Yy)-
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Let us now assume that the tangent vectors X,,,Y, € T,5™ are
linearly independent. Then the symmetric linear operators

dop(Xp), ddp(Yy) : R™ — R™

satisfy
dop(X,)(p) = 2X, # 2Y, = do,(Y,)(p)-

This implies that the linear differential d¢, of ¢ at p is injective and
hence the map ¢ : S™ — Sym(R™"!) is an immersion.

If two points p,q € S™ are linearly independent, then the cor-
responding lines ¢, and ¢, are different. But these are exactly the
eigenspaces of R, and R, with the eigenvalue +1, respectively. This
shows that the linear endomorphisms R, and R, of R™*! are different
in this case.

On the other hand, if p and ¢ are parallel i.e. p = +q then R, = R,.
This means that the image ¢(S™) can be identified with the quotient
space S™/ = where = is the equivalence relation defined by

x =y if and only if x = +y.

The quotient space is of course the real projective space RP™, in-
troduced in Example 2.6 This implies that the map ¢ induces an
embedding @ : RP™ — Sym(R™*!) satisfying @ : [p| — R,.
For each point p € S™ the reflection R, : R™** — R™*! about the
line ¢, satisfies
Rp-R;:Rp-Rp:e.

This shows that the image ®(RP™) = ¢(S™) is not only contained in
the linear space Sym(R™"!) but also in the orthogonal group O(m+1),
which we know from Example is a submanifold of R(m+1)x(m+1),
Since the unit sphere S™ is compact the relation ®(RP™) = ¢(S™)
shows that the real projective space RP™ compact as well.

The next result was proven by Hassler Whitney (1907-1989) in his
celebrated paper, Differentiable Manifolds, Ann. of Math. 37 (1936),
645-680.

Deep Result 3.27. For 1 < r < oo let M be an m-dimensional
C"-manifold. Then there exists a C"-embedding ¢ : M — R*™ L of M
into the (2m + 1)-dimensional real vector space R*™+1.

The following is interesting in view of Witney’s result.
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Example 3.28. According to Example [3.26 the m-dimensional
real projective space RP™ can be embedded into the linear space
Sym(R™*1). The embedding ® : RP™ — Sym(R™"!) is given by

208 =1 2pipy o+ 2D1Pm
2pap1 2p5—1 - 2popia
O [p] = RP = : : . .
2Pm+1P1 2DmsaD2 - 2p72n+1 -1

In the special case of the two dimensional real projective plane R P?
we have the embedding ® : RP? — Sym(R3) into the 6-dimensional
linear space Sym(R3) of symmetric real 3 x 3 matrices. This is given
by

™11 Ti2 T13 222 — 1 2xy 2xz
(2, y,2)] > |2 T2 T3l =| 2yxr 2P -1 2z
T3 T2z T33 2zx 22y 2% —1

The image ®(RP?) is clearly contained in the 5-dimensional hyperplane
of R® defined by
r11 + T2 +r33 = — L.

With the following, we now show that the classical inverse function

theorem generalises to the manifold setting. The reader should compare
this with Fact 213

Theorem 3.29 (The Inverse Mapping Theorem). Let ¢ : M — N
be a differentiable map between manifolds with dim M = dim N. If
p 1s a point in M such that the differential d, : TyM — Ty, N at
p 15 bijective then there exist open neighborhoods U, around p and U,
around q = ¢(p) such that | = ¢|y, : U, — U, is bijective and the
inverse 1 : U, — U, is differentiable.

PROOF. See Exercise 3.8 O
We will now generalise the classical implicit mapping theorem to

manifolds. For this we need the following definition. Compare this
with Definition 2.14

Definition 3.30. Let m,n be positive integers and ¢ : M™ — N"
be a differentiable map between manifolds. A point p € M is said to
be regular for ¢ if the differential

d¢p : TpM — T¢(p)N

is of full rank, but critical otherwise. A point ¢ € ¢(M) is said to be
a regular value of ¢ if every point in the pre-image ¢~ '({q}) of {q}
is regular.
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The reader should compare the following result with Theorem [2.16|

Theorem 3.31 (The Implicit Mapping Theorem). Let ¢ : M™ —
N™ be a differentiable map between manifolds such that m > n. If
q € ¢(M) is a reqular value, then the pre-image ¢~ '({q}) of q is
a submanifold of M™ of dimension an (m — n). The tangent space

T,07*({q}) of o~ *({q}) at p is the kernel of the differential do, i.e.
T,o ' ({a}) = {X € T,M | do,(X) = 0}.

PRrROOF. Let (V,y) be a local chart on N with ¢ € V" and y(¢q) = 0.
For a point p € ¢~ ({¢q}) we choose a local chart (U, x) on M such that
p € U, z(p) =0 and ¢(U) C V. Then the differential of the map

P =yo ¢ox_1|x(U) cx(U) - R
at the point 0 is given by
dibg = (dy)g 0 dg, o (dx™1)g : T)R™ — TyR™.

The pairs (U, x) and (V, y) are local charts so the differentials (dy), and
(dz~1)g are bijective. This means that diy is surjective since do, is. It
then follows from Theorem that (¢! ({q}) N U) is an (m — n)-
dimensional submanifold of x(U). Hence ¢~!({q}) N U is an (m — n)-
dimensional submanifold of U. This is true for each point p € ¢~'({q})
so we have proven that ¢~1({¢}) is a submanifold of M™ of dimension
(m —n).
Let v: I — ¢~ *({q}) be a curve such that v(0) = p. Then

(@8),(5(0)) = 5601 (O)lewo = Fleco = 0.

This implies that 7,0~ ({q}) is contained in and has the same dimen-
sion as the kernel of d¢,, so T,0~'({q}) = Ker d¢,. O

We conclude this chapter with a discussion on the important sub-
mersions between differentiable manifolds.

Definition 3.32. For positive integers m,n € Z* with m > n a
differentiable map ¢ : M™ — N™ between two manifolds is said to be
a submersion if for each p € M the differential d¢, : T,M — Ty, N
is surjective.

The reader should compare Definition with Definition [3.20]

Example 3.33. If m,n € Z* such that m > n then we have the
projection map m : R™ — R” given by 7 : (z1,...,2p) = (T1,...,2,).
Its differential dm, at a point x is surjective since

dm,(v1, ..o V) = (V1, ..., V).
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This means that the projection is a submersion.

Definition 3.34. Let M™ be a differentiable manifold of dimension
m = |+ n. A foliation F of dimension [ and codimension n is a
partition {L,} of M into connected subsets such that for each element
x € M there is a submersion 7y : U — N™ from an open neighbourhood
U of x to a manifold N such that for each «, the connected components
of U N L, are the fibres of m;. The map 7y is called a distinguished
submersion of 7 on U. An element L, is called a leaf of F.

The next item on the menu is the famous Hopf fibration. This is
named after the distinguished differential topologist Heinz Hopf (1894-
1971). His construction has been very important both in topology and
differential geometry and has later been generalised in several differ-
ent directions. It provides us with an important submersion between
spheres.

Example 3.35. Let S? and S be the unit spheres in C x R = R?
and C? = R*, respectively. Then the Hopf map ¢ : S — S? is given
by

¢ (2,w) = (220, 2 — [w]?).
For a point p = (z,w) in S® the Hopf circle C, through p is defined
by
C, = {e”(z,w) |0 € R}.
The following shows that the Hopf map is constant along each Hopf
circle

¢(6i0(2,w)) — (26ieze_iew,|ewz|2—]ei9w|2)
= (22w, 2" = [w])
= ¢((z,w)).

Now define the vectors vy = (4,0),v9 = (0,1),v3 = (0,i) € C? and, for
k=1,2,3, the curves v, : R — S by

Vg ot cost - (1,0) +sint - vg.

Then 7, (0) = e and 4x(0) = vy, so v1, v2, v3 are elements of the tangent
space T,5% of S? at the neutral element e. They are linearly indepen-
dent and hence form a basis for the 3-dimensional 7,53,

It can be shown that the Hopf map ¢ : S® — S? is surjective and
that the same applies to its differential d¢, : T,5% — Ty, S? for each
p € S3. This means that ¢ is a submersion, so each point ¢ € S?
is a regular value of ¢ and the fibres ¢~*({¢}) of ¢ are 1-dimensional
submanifolds of S3. They are actually the Hopf circles given by

o7 ({22, |2* — [w*)}) = {"(2,w) |§ € R}.
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This means that the 3-dimensional sphere S® foliates as a disjoint union

of great circles
= o' ({ad)

qEeS?
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Exercises

Exercise 3.1. Let p be an arbitrary point of the unit sphere S?7+!
in C"*! = R?""2. Determine the tangent space 7,5%" ™! and show that
this contains an n-dimensional complex vector subspace of C"*1.

Exercise 3.2. Use your local library to find a proof of Proposition

3.9
Exercise 3.3. Prove that the matrices
0 -1 1 0 01
A N R N
form a basis for the tangent space T,SLy(R) of the real special linear

group SLo(R) at the neutral element e. For each & = 1,23 find an
explicit formula for the curve 4 : R — SLy(R) given by

e o s — Exp(sXy).
Exercise 3.4. Find a proof of Theorem [3.13]

Exercise 3.5. Prove that the matrices

0 -1 t 0 0 ¢
Zl - |:1 0 :| ) ZQ = |:0 —Z:| ) Z3 - |:Z O:| )
form a basis for the tangent space T,SU(2) of the special unitary group

SU(2) at the neutral element e. For each k = 1,2,3 find an explicit
formula for the curve v, : R — SU(2) given by

Yk o s — Exp(sZy).

Exercise 3.6. For each non-negative integer k£ define ¢ : C — C
and 9 : C* — C by ¢, U : 2 — zF. For which such k are ¢y,

immersions, embeddings or submersions ?

Exercise 3.7. Prove that the differentiable map ¢ : R™ — T™
given by
G (T, ) > (€710 €M)
is a parametrisation of the m-dimensional torus 7 in C™.

Exercise 3.8. Find a proof of Theorem [3.29]

Exercise 3.9. Prove that the differential d¢, : T,5% — Ty, S? of
the Hopf-map ¢ : S3 — S?, with

¢ : (Z,’LU) = (2 2w, |Z|2 - |w|2)a

is surjective at any point p € S3.
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CHAPTER 4

The Tangent Bundle

In this chapter we introduce the tangent bundle T'M of a differ-
entiable manifold M. Intuitively, this is the object that we obtain by
glueing at each point p in M the corresponding tangent space 1, M.
The differentiable structure on M induces a natural differentiable struc-
ture on the tangent bundle 7'M turning it into a differentiable manifold
of twice the dimension of M. To explain the notion of the tangent bun-
dle we investigate several concrete examples. The classical Lie groups
will here play a particular important role.

We have already seen that for a point p € R™ the tangent space
T,R™ can be identified with the m-dimensional vector space R™. This
means that if we at each point p € R™ glue the tangent space T,R™ to
R™ we obtain the so called tangent bundle of R™

TR™ = {(p,v)|p € R™ and v € T,R™}.
For this we have the natural projection 7 : TR™ — R™ defined by
m:(p,v) = p

and for each point p in M the fibre 7=!({p}) over p is precisely the
tangent space T,R™ at p.

Remark 4.1. Classically, a vector field X on R™ is a differen-
tiable map X : R™ — R™ but we would like to view it as a map
X :R™ — TR™ into the tangent bundle and write

X :p—(p, Xp).
Following Proposition two vector fields X,Y : R™ — TR™ can be

written as
0
X = E ak—andY E by, - (%"k

where a, by : R™ — R are differentiable functlons defined on R™. If
f : R™ — R is another such function then the commutator [X, Y]
acts on f as follows

(X YI(f) = X(OV(f) =Y (X))
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= 3 (arp ) — b () ()

k=

[y

ob, 0 0?

= - b —
<ak8xk 8xl + % lal’kal‘l

“ - 8bl 8@1 0
— b ) ().
This shows that the commutator [X, Y] is actually a differentiable vec-
tor field on R™.

In this chapter we will generalise the above important ideas to the
manifold setting. We first introduce the following general notion of a
topological vector bundle.

Definition 4.2. Let £ and M be topological manifolds and 7 :
E — M be a continuous surjective map. The triple (F, M, ) is said
to be an n-dimensional topological vector bundle over M if

(i) for each point p in M, the fibre E, = 7 '({p}) is an n-
dimensional vector space,

(ii) for each point p in M, there exists a local bundle chart
(7= Y(U),) consisting of the pre-image 7~ '(U) of an open
neighbourhood U in M containing the point p and a home-
omorphism ¥ : 77 1(U) — U x R™ such that for each ¢ € U the
map 1, = Vg, : B — {q} x R™ is a vector space isomorphism.

A bundle atlas for the topological vector bundle (E, M, 7) is a
collection

B={(r""(Ua),¥a) | @ € T}
of local bundle charts such that
M=]U,
acl
and for all o, § € T there exists a map A, 3 : U, NUs — GL,(R) such
that the corresponding continuous map
¢B (@] ’(/}(;1|(UamUﬂ)><]Rn . (Ua ﬂ Uﬁ) X Rn — (Ua ﬂ Uﬁ) X Rn

is given by
(p,v) = (P, (Aa,5(p)) (v))-
The elements of {A, |, € Z} are called the transition maps of

the bundle atlas B.
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Definition 4.3. Let (F, M, 7) be an n-dimensional topological vec-
tor bundle over M. A continuous map v : M — E is called a section
of the bundle (E, M, ) if 7 o v(p) = p for each p € M.

Definition 4.4. A topological vector bundle (E, M, ) over M of
dimension n is said to be trivial if there exists a global bundle chart
v E— M xR

We now give two examples of trivial topological vector bundles.

Example 4.5. Let M be the one dimensional unit circle S* in R?,
E be the two dimensional cylinder £ = S' x R! and 7 : E — M be the
projection map given by 7 : (p,t) — p. Then (E, M, ) is a trivial line
bundle i.e. a trivial 1-dimensional vector bundle over the circle. This
because the identity map ¢ : ST x R! — St x R! with ¢ : (p,t) — (p,t)
is a global bundle chart.

Example 4.6. For a positive integer n and a topological manifold
M we have the n-dimensional trivial vector bundle (M x R", M, )
over M, where m : M xR™ — M is the projection map with 7 : (p,v) —
p. The bundle is trivial since the identity map ¢ : M x R® — M x R"
is a global bundle chart.

The famous Mobius band is an interesting example of a non-trivial
topological vector bundle.

Example 4.7. Let M be the unit circle S* in R* parametrised by

v : R — R* with
v s+ (coss,sins,0,0).
Further let £ be the well known Mobius band in R* parametrised by
¢ : R? — R* with
¢ (s,t) — (coss,sins,0,0) +¢-(0,0,sin(s/2),cos(s/2)).

Then FE is a regular surface and the natural projection 7 : £ — M
given by 7 : (x,y, z,w) — (x,y,0,0) is continuous and surjective. The
triple (E, M, 7) is a line bundle over the circle S'. The Mobius band

is not orientable and hence not homeomorphic to the product S! x R.
This shows that the bundle (E, M, ) is not trivial.

We now introduce the notion of a smooth vector bundle. As we
will see in Example the tangent bundle (TM, M, 7) of a smooth
manifold M belongs to the C*°-category.

Definition 4.8. Let E and M be differentiable manifolds and
m . E — M be a differentiable map such that (F,M,n) is an n-
dimensional topological vector bundle. A bundle atlas B for (E, M, )
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is said to be differentiable if the corresponding transition maps are
differentiable. A differentiable vector bundle is a topological vector
bundle together with a maximal differentiable bundle atlas. By C*°(E)
we denote the set of all smooth sections of (£, M, ).

Definition 4.9. Let (E, M, ) be a differentiable vector bundle
over a manifold M. A subbundle (E, M, 7) of (E, M,n) is a vector
bundle over M such that E, is a linear subspace of E, for all p € M.

From now on we will assume, when not stating otherwise,
that all our vector bundles are smooth i.e. of the C"*°-category.

Definition 4.10. Let (E, M, 7) be a smooth vector bundle over a
manifold M. Then we define the operations + and - on the set C*°(FE)
of smooth sections of (E, M, ) by

(i) (v+w), = vy + wy,

(i) (f - v)p = f(p) - vp
forall pe M, v,w € C®(E) and f € C*(M).

If U is an open subset of M then a set {vq,...,v,} of smooth
sections vy,...,v, : U — E on U is called a local frame for F if for
each p € U the set {(v1)p, ..., (vn),} is a basis for the vector space E,
i.e. the fibre 7= 1({p}) over p.

Remark 4.11. According to Definition [2.20] the set of smooth
real-valued functions on M is denoted by C'*°(M). This satisfies the
algebraic axioms of a ring but not those of a field. With the above de-
fined operations on C*°(E) it becomes a module over the ring C*(M)
and in particular a vector space over the field of real numbers, seen
as the constant functions in C*°(M).

The following example is the central part of this chapter. Here we
construct the differentiable tangent bundle of a differentiable manifold.

Exgmple 4.12. Let M™ be a differentiable manifold with maximal
atlas A. Then define the set T'M by
TM ={(p,v)|pe M and v € T,M}
and let m: T"M — M be the projection map satisfying
7T (p,v) — p.
For each point p € M, the fibre 7=!({p}) is the tangent space T,M
isomorphic to R™. The triple (T'M, M, ) is called the tangent bundle

of M. We will now equip this with the structure of a differentiable
vector bundle.
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For every local coordinate x : U — R™ on the manifold M, we
define a local chart

o N (U) = R™ x R™

on the tangent bundle T'M of M by the formula

p,zvk (50),) = (50), (10 o)

Proposition shows that the map z* is well defined. The collection
{(z)} (W) c TM | (U,z) € Aand W C z(U) x R™ open}

is a basis for a topology Tras on TM and (7' (U),z*) is a local chart
on the topological manifold (7'M, Try;) of dimension 2m. Note that
Trar is the weakest topology on T'M such that the bundle charts are
continuous.

If (U, z), (V,y) € A are two local charts on the differentiable mani-
fold M such that p € U NV then it follows from Exercise 1] that the
transition map

(y) o () iat (@ (UNV)) = R™ x R™

is given by

(a,b) —~ (yoz(a) (Zgﬁ “a)) - by, . .. Z?Z X bk))

Since we are assuming that y o 7! is differentiable it follows that the
map (y*) o (z*)~! is also differentiable. Accordingly, the collection

A" ={(n7(U),2") | (U,x) € A}

is a differentiable atlas on the tangent bundle TM so (T'M ,ﬁ) is a
differentiable manifold. Furthermore, it is clear that the surjective
projection map 7 : TM — M is differentiable.

For each point p € M the fibre 7=!({p}) is the linear tangent space
T,M isomorphic to R™. For a local coordinate x : U — R™ on M we
define the map 7 : 77 1(U) — U x R™ by

P30 (52),) = (a0 a0
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The restriction 7, = Z|pn @ T,M — {p} x R™ of T to the tangent
space 1, M is given by

Tp : ka 8xk = (v1(p), - - vm(p)),

so it is clearly a vector space isomorphism. This implies that the map
z:m Y U)—UxR™
is a local bundle chart. If (U, z), (V,y) € A are two local charts on M
such that p € U NV then the transition map
() o (@) :(UNV)XxR" = (UNV)xR™

is given by
ayl aym
g, )
It is clear that the matrix

Oy1/0x1(p) ... Oyr1/0zm(p)

is of full rank so the corresponding linear map A(p) : R™ — R™ is a
vector space isomorphism for all p € U N'V. This shows that

A={(x"(U),2)| (U,x) € A}

is a bundle atlas turning (T'M, M, 7) into a topological vector bun-
dle of dimension m. It follows from the above that (T'M, M, ) together
with the maximal bundle atlas induced by A is a differentiable vec-
tor bundle.

Definition 4.13. Let M be a differentiable manifold. A differen-
tiable subbundle of the tangent bundle (T'M, M, ) is called a distri-
bution on M.

We now introduce the fundamental notion of a vector field on a
differentiable manifold.

Definition 4.14. Let M be a differentiable manifold, then a section
X : M — TM of the tangent bundle is called a vector field. The set
of smooth vector fields X : M — T'M is denoted by C>°(TM).

Example 4.15. We have earlier seen that the 3-dimensional unit
sphere S? in H = C? = R* carries a group structure - given by

(z1,w1) * (22, wq) = (2122 — WyWa, w129 + Z1W2).
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This turns (S, ) into a Lie group with neutral element e = (1,0). Put
vy = (0,1), v = (4,0) and v3 = (0,4) and for k = 1,2,3 define the
curves v, : R — S® by

Vg ot cost - (1,0) +sint - vg.

Then 74 (0) = e and 4 (0) = vi, so vy, ve, v are elements of the tangent
space 1,53 of S? at the neutral element e. They are linearly indepen-
dent and hence form a basis for 7..5%.

The group structure on S? can be used to extend vectors in 7,53
to vector fields on S as follows. For a point p € S3, let the map
L, : 5% — S3 be the left-translation on the Lie group S® by p satisfying
L, :qr p-q. Then define the vector fields X, X, X3 € C®(T'S?) on
S3 by

(Xi)p = (dLp)e(vr)
d

= 5 Lp(n()))li=o

= )l

dt
= P Vg.
It is left as an exercise for the reader to show that at an arbitrary point
p = (z,w) € S? the values of X}, at p are given by
(Xl)p = (va) ) (07 1) = (—ﬁ}, 2);
(X2>P = (Z,U)) ’ (7'70) = (iz,iw),
(X3)p (z,w) - (0,7) = (—iw,iz).

Our next task is to introduce the important Lie brackets on the set
of smooth vector fields C*°(T'M) on the manifold M.

Definition 4.16. Let M be a differentiable manifold. For two
vector fields XY € C®(T'M) we define the Lie bracket [X,Y], :
C®(M)—Rof X and Y at p € M by

(X Y,(f) = X, (Y(f) = Yo (X ().

Remark 4.17. The reader should note that if M is a smooth man-
ifold, X € C*(TM) and f € C*°(M) then the derivative X (f) is the
smooth real-valued function on M given by X (f) : p — X,(f) for all
p e M.

The next result shows that the Lie bracket [X, Y], is actually an el-
ement of the tangent space T, M of M at p. The reader should compare
this with Definition [3.6] and Remark [4.1]

49



Proposition 4.18. Let M be a smooth manifold, X,Y € C>(TM)
be vector fields on M, f,g € C°(M) and A\, € R. Then
(1) (X, YA f+p-g9) = A [X Y] (f) + - [X Y]o(9),
(1) [X,Y](f - 9) = [X, Y]p(f) - 9(p) + f(p) - [X, Y], (9)-
PROOF. The result is a direct consequence of the following calcu-
lations.

(X, Y]p(Af + pg)
= Xp(Y(Af + ng)) = Yp(X(Af + ng))

AXp(Y () + 1Xp(Y(9) — AY,(X(f)) — 1Y,(X(9))
= )‘[X> Y];D(f) + ,U[X, Y]p(g)-

(X, Y]p(f - 9)

Proposition |4.18|implies that if X,Y are smooth vector fields on M
then the map [X,Y] : M — TM given by [X,Y] : p— [X,Y], is a
section of the tangent bundle. In Proposition [4.20| we will prove that
this section is smooth. For this we need the following technical result.

Lemma 4.19. Let M™ be a smooth manifold and X : M — TM
be a section of TM. Then the following conditions are equivalent

(i) the section X is smooth,
(i) if (U,x) is a local chart on M then the functions ai, ..., ay, :
U — R given by

" 0
X|U = Z“’“a_:ck’
k=1

are smooth,
(15i) if f 'V — R defined on an open subset V' of M is smooth, then
the function X (f):V — R with X(f)(p) = X,(f) is smooth.

ProOF. This proof is divided into three parts. First we show that
(i) implies (ii): The functions

ar = Tmapor o X|yp: U =7 U) = z(U) x R™ = R
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are compositions of smooth maps so therefore smooth.
Secondly, we now show that (ii) gives (iii): Let (U, x) be a local
chart on M such that U is contained in V. By assumption the map
X = =
(flo) ;@ or
is smooth. This is true for each such local chart (U, x) so the function
X(f) is smooth on V.
Finally we show that (iii) leads to (i): Note that the smoothness of

the section X is equivalent to z* o X[y : U — R*™ being smooth for
all local charts (U, x) on M. On the other hand, this is equivalent to

%

xp=mpox o X|y:U—=R

being smooth for all £ =1,2,...,2m and all local charts (U, z) on M.

It is trivial that the coordinate functions xj = x for k =1,...,m are
smooth. But z7 ., = ar = X(xy) for k = 1,...,m hence also smooth
by assumption. 0

Proposition 4.20. Let M be a manifold and X,Y € C>*(T'M) be
vector fields on M. Then the section [X,Y]: M — TM of the tangent
bundle giwen by [ X,Y]:p— [X,Y], is smooth.

ProOOF. Let f : M — R be an arbitrary smooth function on M
then [X,Y](f) = X(Y(f)) — Y(X(f)) is smooth so it follows from
Lemma that the section [X, Y] is smooth. O

For later use we prove the following important result.
Lemma 4.21. Let M be a smooth manifold and
[,]] : C®(TM) x C*(TM) — C>*(TM)
be the Lie bracket on the tangent bundle TM of M. Then
(1) (X, f-Y]=[-[X,Y]+X(f) Y,
(i) [f - X, Y] =f-[X,Y]=Y(f)- X,
for all XY € C®°(TM) and f € C*(M).
PROOF. If g € C*°(M), then
(X, f-Y]lg) = X(f-Y(9))—f-Y(X(g))
= X(f)-Y(g)+ /- X(Y(9) - f Y(X(9))
(X(f)-Y + [ [X,Y])(9).

This proves the first statement and the second follows from the skew-
symmetry of the Lie bracket. 0
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We now define the general notion of a Lie algebra. This is a funda-
mental concept in differential geometry.

Definition 4.22. A real vector space (V,+,-) equipped with an
operation [-,-] : V x V — V is said to be a real Lie algebra if the
following relations hold

(i) AX 4+ pnY, Z] = N\X, Z] + ulY, 7],

(i) [X,Y]=—[Y, X],

(i) [X, [V, 2] + [Z,[X, Y]] + [V, [Z, X]] = 0,
forall X, Y, Z € V and A, u € R. The important equation (iii) is called
the Jacobi identity.

Example 4.23. Let R? be the 3-dimensional real vector space gen-
erated by X = (1,0,0), Y = (0,1,0) and Z = (0,0,1). Let x be the
standard cross product on R? and define the skew-symmetric bilinear
operation [, -] : R® x R® — R3 by
(X, Y]=XxY =7,
Z,X]=ZxX=Y,
Y, Z| =Y xZ=X.

This turns R? into a Lie algebra. Compare this with Exercise

Theorem 4.24. Let M be a smooth manifold. The vector space
C>®(TM) of smooth vector fields on M equipped with the Lie bracket
[-,-] : C®(TM) x C*(TM) — C®(TM) is a Lie algebra.

PROOF. See Exercise [4.4] dJ

Definition 4.25. If ¢ : M — N is a surjective map between
differentiable manifolds, then two vector fields X € C(TM) and X €
C>(T'N) are said to be ¢-related if dp,(X,) = Xy, for all p € M.
In that case we write dp(X) = X.

Example 4.26. Let S' be the unit circle in the complex plane
and ¢ : S — S! be the map given by ¢(z) = z2. Note that this is
surjective but not bijective. Further let X be the vector field on S*
satisfying X (z) = iz. Then

d ’ d ; .
do.(X.) = —5(6(2e")) om0 = —5((2€”))lo=0 = 2i2* = 2X,().
This shows that the vector field X is ¢-related to X = 2.X.

Example 4.27. Let f : R — R be a surjective C''-function and
z,y € R such that  # y, f(z) = f(y) and f'(xz) # f'(y). Further
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let v : R — R be the curve with «(¢) = t and define the vector field
X € CH(TR) by X; = 4(t). Then for each ¢t € R we have
dfi(Xe) = (fov(t)) = f'(b).
If X € CY(TR) is a vector field which is f-related to X then
X = dfo(Xa) = f'(x) # ['(y) = dfy(X,) = Xyq.

This contradicts the existence of such a vector field X.

The next item is hopefully helpful for understanding the proof of
Proposition

Remark 4.28. Let ¢ : M — N be a differentiable map between
differentiable manifolds. For this situation we have in Definition [3.14]
introduced the linear differential d¢, : T, M — Ty, N of ¢ at a point
p € M such that for all X, € T,M and f € e(¢(p)) we have

(dop(Xp))(f) = Xp(f 0 ),

or equivalently,

dp(X)(f)(0(p)) = X (f 0 6)(p).

This equation is a comparison of two real numbers. But since it is true
for all points p € M it induces the following relation at the level of
functions

do(X)(f) o ¢ =X(f o).
The next result turns out to be important and will be employed
several times in what follows.

Proposition 4.29. Let ¢ : M — N be a surjective map between
differentiable manifolds, X,Y € C°®°(TM) and X,Y € C>®(TN) such
that dp(X) = X and d¢(Y) = Y. Then the Lie brackets [X,Y] €
C>®(TM) and [X,Y] € C®(TN) are ¢-related i.e.

PROOF. Let p € M and f: N — R be a smooth function, then

dop([X, Y])(f) = [X,Y]p(fo)
Xp(Y(f o)) = Yp(X(fo09))
Xp(do(Y)(f) 0 @) = Yy(d(X)(f) 0 §)
= d6(X ) (0¥ ) () — oY ) (d0(X) (1)
= [X, Yo (f)-
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For the important special case of a diffeomorphism we have the
following natural consequence of Proposition |4.29.

Proposition 4.30. Let M and N be differentiable manifolds and
¢: M — N be a diffeomorphism. If X, Y € C>®°(TM) are vector fields
on M, then do(X) and do(Y') are vector fields on N and the tangent
map d¢ : C°(TM) — C*(TN) is a Lie algebra homomorphism i.e.

dp([X,Y]) = [do(X), dp(Y)].

PROOF. The fact that ¢ is bijective implies that d¢(X) is a section
of the tangent bundle TN. That d¢(X) is smooth follows directly from

the fact that
dp(X)(F)(0(p)) = X (f o 9)(p),
for all p € M and f € g(¢(p)). The rest is an immediate consequence

of Proposition O

Definition 4.31. Let M be a differentiable manifold. Two vec-
tor fields X,Y € C>(T'M) are said to commute if their Lie bracket
vanishes i.e. [X,Y]=0.

The fact that a local chart on a differentiable manifold is a diffeo-
morphism has the following important consequence.

Proposition 4.32. Let M™ be a differentiable manifold, (U, z) be
a local chart on M and

k=1,2,...
{8J;k | » = 7m}
be the induced local frame for the tangent bundle T'M. Then the local
frame fields commute i.e.
o, 2]
8;Uk 81’[
PrOOF. The map x : U — z(U) is a diffeomorphism. The vector
field 0/0x), € C*(TU) is a-related to the coordinate vector field 0., €
C>®(Tx(U)). Then Proposition implies that
o 0
do([—— =) =
s ) = |
The last equation is an immediate consequence of the following well
known fact

=0 forall k,l=1,.

Oeys O] =0

[aek7 8 ](f) - 86k(a€l(f)) - aez(aek(f)) =0

for all f € C%*(z(U)). The statement now follows from the fact that
the linear map dx,, : T, M — T,,)R™ is bijective for all p € U. O
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We now introduce the notion of a left-invariant vector field on a
Lie group. This will play an important role later on and should be
compared with Example [4.15]

Definition 4.33. Let GG be a Lie group. Then a vector field X €
C>®(TG) on G is said to be left-invariant if it is L,-related to itself
for all p € G i.e.

(dLy)(X,) = X,q forall p,geG.

The set of left-invariant vector fields on G is called the Lie algebra of
G and denoted by g.

Remark 4.34. It should be noted that if e is the neutral element
of the Lie group G and X € g is a left-invariant vector field on GG, then

X, = (dL,)(X.).

This shows that the value X, of the left-invariant vector field X € g at
p is completely determined by its value X, at e. Hence the linear map
®:T.G — g given by

D: X, = (X :pe (dLy).(X.))

is a vector space isomorphism. As a direct consequence of this fact we
see that the Lie algebra g is a finite dimensional subspace of C*(T'G)
of the same dimension as that of the Lie group G.

Proposition 4.35. Let G be a Lie group. Then its Lie algebra g is
a Lie subalgebra of C*(TG) i.e. if X,Y € g are left-invariant then
(X, Y] € g is left-invariant.

PROOF. If p € G then the left translation L, : G — G is a diffeo-
morphism so it follows from Proposition that

dLy([X,Y]) = [dLy(X), dLy(Y)] = [X, Y]

for all X|Y € g. This proves that the Lie bracket [X,Y] of two left-
invariant vector fields X, Y € g is also left-invariant. O

The following shows that the Lie algebra of a Lie group can be iden-
tified with the tangent space at its neutral element. This identification
turns out to be very useful.

Remark 4.36. The reader should note that the linear isomorphism
®:T.G — g given by

D: X, (X :pe (dL,)e(X.))
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induces a natural Lie bracket [-,-] : T.G x T.G — T.G on the tangent
space T.G of G at e via

[Xea Ye] = [Xv Y]e-

This shows that we can simply identify the Lie algebra g of G with its
tangent space T,G at the neutral element e € G.

Notation 4.37. For the classical matrix Lie groups, introduced
in Chapter [3] we denote their Lie algebras by gl,,(R), sl,,(R), o(m),
so(m), gl,,(C), sl,,,(C), u(m) and su(m), respectively.

The next result is a useful tool for handling the Lie brackets of the
classical matrix Lie groups. They can simply be calculated by means
of the standard matrix multiplication.

Proposition 4.38. Let G be one of the classical matrix Lie groups
and T.G be the tangent space of G at the neutral element e. Then the
Lie bracket |-,-] : T.G x T.G — T.G on T.G is given by

[Xeaife] :Xe'}/e_ife'Xea
where - is the standard matriz multiplication.

PROOF. We prove the result for the general linear group GL,,(R).
For the other real groups the result follows from the fact that they are
all subgroups of GL,,(R). The same proof can be used in the complex
cases.

Let X,Y € gl,(R) be left-invariant vector fields, f : U — R be
a function defined locally around the identity element e and p be an
arbitrary point of U. Then the first order derivative X,(f) of f at p is
given by

Xp(f) = %(f(p : EXP(tXe))) |t:0 = dfp(p : Xe) = dfp(Xp)'

The general linear group GL,,(R) is an open subset of R™*™ so we
can apply standard arguments from multivariable analysis. The second
order derivative Y, (X (f)) satisfies

VUX() = S Kepn(Dhoo

d
= 5 (e (Bxp(tYe) - Xe))leo
= d2fe(§/eu Xe) + dfe(Y; : Xe)-
Here d?f, is the symmetric Hessian of the function f. As an immediate
consequence we obtain

(X, Y]e(f) = Xe(Y(f)) = Ye(X(f))
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= & fo(Xe, Ye) + dfe(X. - Ye)
—d fe(Ye, Xe) — dfe(Ye - Xe)
= dfe<Xe : Y; - Y; : Xe)-
This last calculation implies the statement. O

Corollary 4.39. Let G be one of the classical matriz Lie groups
and T,G be the tangent space of G at the neutral element e. If p € G
and X, Y € g are left-invariant vector fields on G then their Lie bracket
(X, Y] € g satisfies

(X, Y], =p- (Xe-Ye = Yo Xo),
where - 1s the standard matrix multiplication.

PRrOOF. The statement is an immediate consequence of Proposition
4.38] O

The next remarkable result shows that the tangent bundle of any
Lie group is trivial.

Theorem 4.40. Let G be a Lie group. Then its tangent bundle
TG s trivial.

Proor. Let {(X1)e,...,(Xm)e} be a basis for the tangent space
T.G of G at the neutral element e. Then extend each tangent vector
(Xk)e € T.G to the corresponding left-invariant vector field X, € g
satisfying

(Xi)p = (AL,)e((X0).):
For a point p € G, the left translation L, : G — G is a diffeomorphism
so the set {(X1)p,...,(X:n),} is a basis for the tangent space T,G of
G at p. This means that the map ¢ : TG — G x R™ given by

m

(U (pazvk “(Xi)p) = (0, (V1y -+, 0m))

k=1
is globally well-defined. This is a global bundle chart for T'G, which
therefore is trivial. U
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Exercises

Exercise 4.1. Let (M, A) be a smooth manifold, (U, z), (V,y) be
local charts such that U NV is non-empty and

f=yox:z(UNV)—=R"

be the corresponding transition map. Show that the local frames

0 0
=1,... —ly=1,...
{axi\z ,...,m} and {8yj|j yee MY}

for TM on U NV are related as follows

0 0(fjox) 0

Exercise 4.2. Let SO(m) be the special orthogonal group.

(i) Find a basis for the tangent space 17,SO(m),
(ii) construct a non-vanishing vector field Z € C*(T'SO(m)),
(iii) determine all smooth vector fields on SO(2).

The Hairy Ball Theorem. There does not exist a continuous
non-vanishing vector field X € C°(T'S?™) on the even dimensional
sphere S?™,

Exercise 4.3. Employ the Hairy Ball Theorem to show that the
tangent bundle T'S*™ is not trivial. Then construct a non-vanishing
vector field X € C*(T'S?*™*1) on the odd-dimensional sphere S*™+1.

Exercise 4.4. Find a proof of Theorem [4.24]

Exercise 4.5. The Lie algebra sly(R) of the special linear group
SL(R) is generated by

0 -1 1 0 01
Al I B IR TR
Show that the Lie brackets of sly(R) satisfy
X,Y]|=2Z2, [Z.X]=2Y, [V.Z]=—2X.

Exercise 4.6. The Lie algebra su(2) of the special unitary group
SU(2) is generated by

0 —1 t 0 0 ¢
S ) Rl R
Show that the corresponding Lie bracket relations are given by
(X, Y|=2Z [Z,X]|=2Y, [V,Z]=2X.
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Exercise 4.7. The Lie algebra so(3) of the special orthogonal group
SO(3) is generated by

0 -1 0 00 -1 0 0 O
X=1|1 0 0|, Y=(00 0, Z=10 0 -1
0 0 0 10 0 01 0

Show that the corresponding Lie bracket relations are given by
X,Y=2 [Z,X]=Y, [Y,Z]=X.
Compare this result with Example [4.23]
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CHAPTER 5

Riemannian Manifolds

In this chapter we introduce the notion of a Riemannian manifold.
The Riemannian metric provides us with a scalar product on each
tangent space and can be used to measure angles and the lengths of
curves on the manifold. This defines a distance function and turns the
manifold into a metric space in a natural way. The Riemannian metric
is the most important example of what is called a tensor field.

Let M be a smooth manifold, C*°(M) denote the commutative ring
of smooth functions on M and C*°(T'M) be the set of smooth vector
fields on M forming a module over C*(M). Put

Co*(TM) = C=(M)
and for each positive integer r € Z" let
CP(TM)=C*TM)®---@C®(TM)

be the r-fold tensor product of C*(T'M) over the commutative ring
C>®(M).

Definition 5.1. Let M be a differentiable manifold. A smooth
tensor field A on M of type (s,r) is a map

A:CX(TM)— C*(TM)
which is multilinear over the commutative ring C*°(M) i.e. satisfying
AXi® X1 (f Y +g-2)03 X1 ®--®X,)
= f'A(Xl®"‘®Xk—1®Y®Xk+1®“'®Xr)
+9- AX1® X ®Z0Xm @ ®X,),

for all Xy,..., X, Y, Z € C®°(TM), f,ge C*(M)and k=1,...,r.

Notation 5.2. For the rest of this work we will for A(X;®---®X,)
use the notation A(Xy,...,X,).

The next fundamental result provides us with the most important
property of a tensor field. It shows that the value A(X7,..., X,)(p) of
A(Xq,...,X,) at a point p € M only depends on the values

(Xl)p’ R (Xr)p
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of the vector fields Xi,..., X, at p and is independent of their values
away from p.

Proposition 5.3. Let A : C*(TM) — C®(TM) be a tensor field
of type (s,r) and p € M. Let Xy,...,X, and Yi,...,Y, be smooth
vector fields on M such that (Xy), = (Yi), for each k =1,...,r. Then

A(Xy, . X)) = A(Ye, - ) (p)-

Proor. We will prove the statement for r = 1, the rest follows by
induction. Put X = X and Y =Y and let (U, z) be a local chart on
M. Choose a function f € C*°(M) such that f(p) =1,

support(f) = {p € M| f(p) # 0}

is contained in U and define the vector fields vy, ..., v, € C*°(TM) on
M by

[ @) (%), ifqel,
(“’“)q_{ 0 ifq¢U.

Then there exist functions pg, o € C*°(M) such that

f-X:Zpk-vk and f-Y:Zak-vk.
k=1 k=1

This implies that
AX)(p) = flp) AX
f

and similarly,

AY)(p) =Y owl(p)Alve) ().
k=1
The fact that X, = Y, shows that pi(p) = ox(p) for all k. As a direct
consequence we see that



O

The result of Proposition shows that the following multilinear
operator A, is well-defined.

Notation 5.4. For a tensor field A : C>°(TM) — C°(T M) of type
(s,r) we will by A, denote the real multilinear restriction of A to the
r-fold tensor product T, M ® --- ® T, M of the real vector space T, M
given by

Ay (X1)ps ooy (X)) = A(XL, .., X0 (D).

Next we introduce the notion of a Riemannian metric. This is the
most important example of a tensor field in Riemannian geometry.

Definition 5.5. Let M be a smooth manifold. A Riemannian
metric g on M is a tensor field g : C5°(T'M) — C3°(T'M) such that
for each p € M the restriction g, of g to the tensor product T,M ® T, M
with

9p  (Xp, Yp) = 9(X,Y)(p)
is a real scalar product on the tangent space T,M. The pair (M, g) is
called a Riemannian manifold. The study of Riemannian manifolds
is called Riemannian geometry. The geometric properties of (M, g)
which only depend on the metric g are said to be intrinsic or metric
properties.

The classical Euclidean spaces are Riemannian manifolds defined
as follows.

Example 5.6. The standard m-dimensional Euclidean space E™
is the real vector space R™ equipped with its natural Riemannian met-
ric (,) given by

(X,YV)=X"Y =) XiV
k=1

On Riemannian manifolds we have the notion of the arc length of
a curve, in a natural way.

Definition 5.7. Let (M, g) be a Riemannian manifold and v : [ —
M be a C'-curve in M. Then the arc length L(v) of 7 is defined by

Liy) = / (03D

The standard punctured round sphere X has the following descrip-
tion as a Riemannian manifold.
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Example 5.8. Equip the vector space R™ with the Riemannian
metric g given by

4
e Y

The Riemannian manifold ™ = (R™, g) is called the m-dimensional
punctured round sphere. Let v : RT — Y™ be the curve with
vt (t,0,...,0).
Then the arc length L(7) of v can be determined as follows.
VT / <odt
L(y) =2 dt =2 = 2|arctan(t)|g” = 7.
=2 [ Y= [ 1 = darctan(o);

The important real hyperbolic space H™ can be modelled in differ-
ent ways. In the following Example we present it as the open unit
ball. For the upper half space model see Exercise [8.8

gp(X’ Y) =

Example 5.9. Let Bf*(0) be the open unit ball in R™ given by
B'(0) = {p e R™||p|* < 1}.

By the m-dimensional real hyperbolic space we mean the open unit
ball B{*(0) equipped with the Riemannian metric

4
(1—[pl?)?
Let v : (0,1) — B{*(0) be the curve given by

vt (t,0,...,0).
Then the arc length L(7) of v can be determined as follows.

vy =2 [ Y00 —o [ L — o - o

T—y2 1—¢2 1—t

gp(X7 Y) = <X’ Y>

The following result tells us that a path-connected Riemannian
manifold (M, g) has the structure of a metric space (M, d) in a natural
way.

Proposition 5.10. Let (M,g) be a path-connected Riemannian
manifold. For two points p,q € M let C,, denote the set of C'-curves
v :[0,1] = M such that v(0) = p and ¥(1) = q and define the function
d: M x M — RS by

d(p,q) = nf{L(7) [y € Cpy}-
Then (M, d) is a metric space i.e. for all p,q,r € M we have
(i) d(p,q) > 0,
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(i) d(p,q) = 0 if and only if p =g,

(ii1) d(p,q) = d(q, p),

(iv) d(p.q) < d(p,r) +d(r,q).
The topology on M induced by the metric d is identical to the one M
carries as a topological manifold (M, T), see Definition |2. 1,

PROOF. See for example: P. Petersen, Riemannian Geometry, Grad-
uate Texts in Mathematics 171, Springer (1998). O

A Riemannian metric on a differentiable manifold induces a Rie-
mannian metric on its submanifolds as follows.

Definition 5.11. Let (N, h) be a Riemannian manifold and M be
a submanifold. Then the smooth tensor field g : C*(T'M) — C§°(T'M)
given by

9(X,Y) :p— hy(X,,Y,)

is a Riemannian metric on M. It is called the induced metric on M
in (N, h).

We can now easily equip some of the manifolds introduced in Chap-
ter @l with a Riemannian metric.

Example 5.12. The standard Euclidean metric (,) on R™ induces
Riemannian metrics on the following submanifolds
(i) the unit sphere S™ in R", with n =m + 1,
(ii) the tangent bundle 7'S™ in R™, where n = 2(m + 1),
(iii) the torus 7™ in R™, with n = 2m,

Example 5.13. The vector space C™*™ of complex m x m matrices
carries its standard Riemannian metric h given by
hZ,W) = i Re(trace(Z" - W)),

for all Z, W € C™*™. This induces natural metrics on the submanifolds

of C"™*™ such as R™*™ and the classical Lie groups GL,,(R), SL,,(R),
O(m), SO(m), GL,,(C), SL,,(C), U(m), SU(m).

Our next aim is to prove that every differentiable manifold M can

be equipped with a Riemannian metric g. For this we need Fact [5.15]

Definition 5.14. Let (M, A) be a differentiable manifold. Then a
partition of unity on M consists of a family {f, : M — R|«a € 7}
of differentiable real-valued functions such that

(i) 0< fo<1lforalla €Z,
(ii) every point p € M has a neighbourhood which intersects only
finitely many of the sets

support(fo) = {p € M | fo(p) # 0},
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(iii)
D fa=1
a€l
Note that the sum in (iii) is finite at each point p € M.

For the proof of the following interesting result, it is important that
M is a Hausdorff space with a countable basis, see Defintion

Fact 5.15. Let (M, A) be a differentiable manifold and (Uy)aer be
an open covering of M such that for each a € T the pair (Uy, ¢o) € A
15 a local chart on M. Then there exist
(1) a locally finite open cover (Ws)ges such that each Wg is con-
tained in U, for some o € Z. Furthermore, for each f € J,
W3 is an open neighbourhood for a local chart (Ws,xz3) € A,
and
(11) a partition of unity (fs)ses such that the support(fz) is con-
tained in the open subset Wg of M.

PROOF. See for example J. R. Munkres, Topology, Prentice Hall
(2000). O

We are now ready to prove the following important statement.

Theorem 5.16. Let (M, fl) be a differentiable manifold. Then
there exists a Riemannian metric g on M.

PROOF. For each point p € M, let (U,, ¢,) € A be a local chart
such that p € U,. Then (U,)yecs is an open covering and let (Wg, 27)
be local charts on M as in Fact [5.15] Let (fs)ses be a partition of
unity such that the support(fs) is contained in Wp. Further, let (, )gm
be the standard Euclidean metric on R™. Then for each f € J we
define

gp : O (T M) — Cy°(TM)
by

I

ox) o 0 if p ¢ W
Note that at each point only finitely many of gz are non-zero. This
means that the well defined tensor field g : C*(T'M) — C(T'M)

given by
9=> 9
Bseg
is a Riemannian metric on M. O
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We will now introduce the notion of isometries of a given Riemann-
ian manifold. These play a central role in differential geometry.

Definition 5.17. A map ¢ : (M, g) — (N, h) between Riemannian
manifolds is said to be conformal if there exists a function A : M — R
such that

h<b(p)(d¢p(Xp)v d(bp(yp)) = ?M0) 'gp(va Yp)a

for all X, Y € C*(T'M) and p € M. The positive real-valued function
e’ is called the conformal factor of ¢. A conformal map with A = 0
i.e. e =1 is said to be isometric. An isometric diffeomorphism is

called an isometry.

It is interesting that the isometries of a given Riemannian manifold
actually form a group.

Definition 5.18. For a Riemannian manifold (M, g) we denote
by Iso(M) the set of its isometries. If ¢, € Iso(M) then it is clear
that the composition 1) o ¢ and the inverse ¢! are also isometries.
The operation is clearly associative and the identity map is its neutral
element. The pair (Iso(M), o) is called the isometry group of (M, g).

Remark 5.19. It can be shown that the isometry group (Iso(M), o)
of a Riemannian manifold (M, g) has the structure of a Lie group. For
this see: R. S. Palais, On the differentiability of isometries, Proc. Amer.
Math. Soc. 8 (1957), 805-807.

We next introduce the notion of a Riemannian homogeneous space.
The classical reference for this important class of manifolds is: S.
Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. 1I,
John Wiley & Sons (1969).

Definition 5.20. The isometry group Iso(M) of a Riemannian
manifold (M, g) is said to be transitive if for all p, g € M there exists
an isometry ¢, : M — M such that ¢,,(p) = ¢. In that case (M, g) is
called a Riemannian homogeneous space.

An important subclass of Riemannian homogeneous spaces is that
of symmetric spaces introduced in Definition [7.31]

Example 5.21. Let S™ be the unit sphere in the Euclidean space
E™*!. Then we have a natural action a : SO(m + 1) x S™ — S™ of
the special orthogonal group SO(m + 1) on S™ given by

a:(x,p) = x-p,
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where - is the standard matrix multiplication. The following shows
that this action is isometric

(r-X,2-Y) = X'alzy = X'Y = (X,Y).

This means that the special orthogonal group SO(m+1) is a subgroup
of the isometry group Iso(S™). The full isometry group Iso(S™) of the
unit sphere is the orthogonal group O(m + 1). It is easily seen that
SO(m + 1) acts transitively on the sphere S™ so this is a Riemannian
homogeneous space.

Example 5.22. The standard Euclidean scalar product on the real
vector space R™*™ induces a Riemannian metric on the special orthog-
onal group SO(m) given by

9(X,Y) = 5 trace(X" - Y).
Applying the left translation L, : SO(m) — SO(m), with L, : ¢ — pq,
we see that the tangent space 7,SO(m) of SO(m) at p is simply
T,80(m) ={p- X | X"+ X =0}.

The differential (dL,), : T,SO(m) — T1,,SO(m) of L, at ¢ € SO(m)
satisfies

(dLy)g = gX — pgX.
We then have

gpq<(de)q(qX)a (de)q(qY)) = %trace((qu)tqu)
5 trace(X'¢'p'pqY’)
= 1trace((¢X)'qY).
= 94(¢X,qY).
This shows that the left translation L, : SO(m) — SO(m) is an isom-
etry for all p € SO(m).

We next introduce the important notion of a left-invariant metric
on a Lie group.

Definition 5.23. A Riemannian metric g on a Lie group G is said
to be left-invariant if for each p € G the left translation L, : G — G
is an isometry. A Lie group (G, g) equipped with a left-invariant metric
is called a Riemannian Lie group.

Remark 5.24. It should be noted that if (G, g) is a Riemannian
Lie group and X, Y € g are left-invariant vector fields on G then

gp(Xpa Yp) = gp((de)e(Xe)7 (de)e(Ye)) = ge(Xe, Ye).
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This tells us that a left-invariant metric ¢ on GG is completely deter-
mined by the scalar product g, : T.G X T.G — R on the tangent space
at the neutral element e € G.

Theorem 5.25. A Riemannian Lie group (G,g) is a Riemannian
homogeneous space.

PROOF. For arbitrary elements p,q € G the left-translation ¢,, =
L1 by gp~! € G is an isometry satisfying ¢,,(p) = ¢. This shows
that the isometry group Iso(G) is transitive. O

In Example 2.6 we have introduced the real projective space RP™
as an abstract differentiable manifold. We will now equip this with a
natural Riemannian metric.

Example 5.26. Let S™ be the unit sphere in E™*! and Sym(R™!)
be the vector space of real symmetric (m + 1) X (m + 1) matrices
equipped with the Riemannian metric g given by

g(X,Y) = g trace(X" - Y).
As in Example [3.26 we define the immersion ¢ : S™ — Sym(R™*1) by

¢:p— (Ry:q—2(q,p)p — q)-
This maps a point p € S™ to the reflection R, : R™** — R™*! about
the real line ¢, generated by p. This is clearly a symmetric bijective
linear map.

Let a, 8 : R — 5™ be two curves meeting at a point p € S™ i.e.
a(0) = p = F(0) and put X = &(0), Y = £(0). Then we have seen in
Example that for a curve v € {a, 5} we have

dp(7(0)) = (g = 2(g,7(0))p + 2{q, p)¥(0)).

If B is an orthonormal basis for R™*!, then
9(dey(X),dgp(Y)) = %trace(dqﬁp(X)t ~dpy(Y))
= 1) (g, dep(X)" - dp(Y)q)

qeB

= 1) (dp(X)q,dy(Y)q)

qeB

= ) (@ X)p+{@.n)X. (¢.Y)p+ (g.p)Y)

qeB

= D {p.p)(X, )@, Y) + (X Y){p.q)(p, q)}

= H{XY)+{XY)}

69



— (X,Y).

This proves that the immersion ¢ : S™ — Sym(R™"!) is isometric. In
Example we have seen that the image ¢(S™) can be identified with
the real projective space RP™. This inherits the induced metric from
Sym(R™!). The map ¢ : S™ — RP™ is what is called an isometric
double cover of RP™.

Proposition 5.27. Let RP? be the two dimensional real projective
plane equipped with the Riemannian metric introduced in Ezample[5.26,
Then the surface area of RP? is 2.

ProoF. Example [5.26] shows that if m > 1 is an integer then the
map ¢ : S — RP™ is an isometric double cover. Hence this is lo-
cally volume preserving. This implies that the m-dimensional volume
satisfies

vol(S™) = 2 - vol(RP™).
In particular,
area(RP?) = 1 - area(S?) = 2.
O

Long before John Nash became famous in Hollywood he proved the
next remarkable result in his paper: J. Nash, The imbedding problem
for Riemannian manifolds, Ann. Math. 63 (1956), 20-63. It implies
that every Riemannian manifold can be realised as a submanifold of a
Euclidean space. The original proof of Nash has later been simplified,
see for example: M. Giinther, On the perturbation problem associated
to isometric embeddings of Riemannian manifolds, Ann. Global Anal.
Geom. 7 (1989), 69-77.

Deep Result 5.28. For 3 < r < oo, let (M,g) be a Riemannian
C"-manifold. Then there exists an isometric C"-embedding of (M, g)
into a Fuclidean space E". If the manifold (M,g) is compact then
n<m(m+1) but n < (3m + 11)/2 otherwise.

Remark 5.29. Note that in Example [5.26| we have embedded the
compact Riemannian manifold RP™ isometrically into the Euclidean
space Sym(R™*1) of dimension (m + 2)(m + 1)/2.

Remark 5.30. We will now see that local parametrisations are
very useful tools for studying the intrinsic geometry of a Riemannian
manifold (M, g). Let p be a point on M and Y : U — M be a local
parametrisation of M with ¢ € U and ¢(q) = p. The differential
dzﬂq . T;R™ — T,M is bijective so, following the inverse mapping
theorem, there exist neighbourhoods U, of ¢ and U, of p such that the
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restriction ¢ = 1&|Uq : U, = U, is a diffeomorphism. On U, we have the
canonical frame {ey, ..., ey} for TU, so {di(e1),...,dY(en)} is alocal
frame for T'M over U,. We then define the pull-back metric g = 9*g
on U, by

glew, er) = gldip(er), dy(er)).

Then ¢ : (U, §) = (Up, g) is an isometry so the intrinsic geometry of
(U,, ) and that of (U,, g) are exactly the same.

Example 5.31. Let GG be a classical Lie group and e be the neutral
element of G. Let {X1,..., X} be a basis for the Lie algebra g of G.
For p € G define v, : R™ — G by

Uy (o tw) = Ly(] [ Bxp(teXa(e)))

k=1

where L, : G — G is the left translation given by L,(¢) = pg. Then

(dpp)o(er) = Xi(p)

for all k. This means that the differential (d¢,)o : To)R™ — T,G is an
isomorphism so there exist open neighbourhoods Uy of 0 and U, of p
such that the restriction of 9 to Uy is bijective onto its image U, and
hence a local parametrisation of G around p.

The following idea will later turn out to be very useful. It provides
us with the existence of a local orthonormal frame of the tangent bundle
of a Riemannian manifold.

Example 5.32. Let (M, g) be a Riemannian manifold and (U, x)
be a local chart on M. Then it follows from Proposition that the
set

o 0 0
{—, e }
0x, 0% 0L,
of local vector fields is a frame for the tangent bundle T'M on the open

subset U of M. Then the Gram-Schmidt process produces a local
orthonormal frame

{Ela E27 s 7E’m}
of TM on U.
We will now study the normal bundle of a submanifold of a given

Riemannian manifold. This is an important example of the notion of
a vector bundle over a manifold, see Definition
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Definition 5.33. Let (N, h) be a Riemannian manifold and (M, g)
be a smooth submanifold equipped with the induced metric. For a
point p € M we define the normal space N,M of M at p by

N,M ={X € T,N | h,(X,Y)=0 forall Y € T,M}.
For all p € M we have the orthogonal decomposition
T,N =T,M @ N,M.
The normal bundle of M in N is defined by
NM ={(p,X)|pe M and X € N,M}.

Theorem 5.34. Let (N, h) be a Riemannian manifold and (M™, g)
be a smooth submanifold equipped with the induced metric. Then the
normal bundle (NM, M, ) is a smooth vector bundle over M of di-
mension (n —m).

PROOF. See Exercise (.61 O

Example 5.35. Let S™ be the unit sphere in R™*! equipped with
its standard Euclidean metric (,). If p € S™ then the tangent space
T,5™ of S™ at p is

T,5™ = {X € R | {p, X) = 0},
so the normal space N,S™ of S™ at p satisfies
N,S™ ={X-p e R™ |\ € R}.
This shows that the normal bundle NS™ of S™ in R™*! is given by
NS™={(p,\-p) € R**?|pec S and ) € R}.

We will now determine the normal bundle NSO(m) of the special
orthogonal group SO(m) as a submanifold of R”™*™.

Example 5.36. Let the linear space R™*™ of real m x m matrices
be equipped with its standard Euclidean scalar product satisfying

9(X,Y) = L trace(X* - Y).
Then we have a natural action « : SO(m) x R™*™ — R"™ ™ of the
special orthogonal group SO(m) on R™*™ given by

a:(px)— Ly(z)=p-x.

Then for any point p € SO(m) and tangent vectors X,Y € R"™*™ it
follows that

g(pX,pY) = gtrace((pX)'(pY))
= 3 trace(X'p'pY)
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= Ltrace(X'Y)
= g(X,Y).

This tells us that this action of SO(m) on R™*™ is isometric.
As we have seen in Example the tangent space T.SO(m) of
SO(m) at the neutral element e satisfies

T.S0(m) = {X e R™™| X" + X = 0}.
This means that the tangent bundle 7SO(m) of SO(m) is given by
TSO(m) = {(p,pX)|p € SO(m) and X € T,SO(m)}.
The real vector space R™*™ has a natural linear decomposition
R™™ = T,SO(m) & Sym(R™),
where every element X € R™*™ can be decomposed X = X' + X+
uniquely into its skew-symmetric and symmetric parts given by
X'=3X-X" and X' =1(X+X").
If X € T.SO(m) and Y € Sym(R™) then
9(X,Y) = 3trace(X'Y)
= 1trace(Y'X)
5 trace(XY")
= 1 trace(—X'Y)
= —g(X,Y).
This shows that g(X,Y’) = 0, so the normal space N.SO(m) of SO(m)
in R™*™ at the neutral element e, satisfies
N.SO(m) = Sym(R™).
This means that the normal bundle NSO(m) of SO(m) in R™*™ is
given by
NSO(m) ={(p,pY)|p € SO(m) and Y € Sym(R™)}.

A Riemannian metric g on a differentiable manifold M can be used
to construct families of natural metrics on the tangent bundle T'M of
M. The best known such examples are the Sasaki and Cheeger-Gromoll
metrics. For a detailed survey on the geometry of tangent bundles
equipped with these metrics we recommend the paper: S. Gudmunds-
son, E. Kappos, On the geometry of tangent bundles, Expo. Math. 20
(2002), 1-41.
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Exercises

Exercise 5.1. Let R™ and C™ be equipped with their standard
Euclidean metrics given by

g(z,w) = Re Z 2 Wk
k=1

and let

T ={ze€C"||z|=...=|zn| =1}
be the m-dimensional torus in C™ with the induced metric. Let ¢ :
R™ — T™ be the standard parametrisation of the m-dimensional torus
in C™ satisfying ¢ : (z1,...,2n) — (€%1,... €®m). Show that ¢ is
isometric.

Exercise 5.2. The stereographic projection from the north pole
of the m-dimensional sphere

m m 4
¢<S \{<170770)}7<7>)_><R 7W<7>)
is given by
1
O (o, T) > 1_x0-(a:1,...,xm).

Show that ¢ is an isometry.
Exercise 5.3. Let B?(0) be the open unit disk in the complex plane
equipped with the hyperbolic metric
4
TR
Equip the upper half plane {z € C|Im(z) > 0} with the Riemannian
metric

g(X,Y) = (X, Y).

1
X)Y)=——7-(X,Y).
g( ) ) Im(z)2 < ) >
Prove that the holomorphic function f : B?(0) — {z € C|Im(z) > 0}
given by
1+ 2z
I +iz

fiz—
is an isometry.

Exercise 5.4. Equip the special unitary group SU(m) with the
Riemannian metric g given by

9(Z,W) = 1 Re(trace(Z" - W)).
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Show that for each p € SU(m) the left translation L, : SU(m) —
SU(m) is an isometry.

Exercise 5.5. For the general linear group GL,,(R) we have two
Riemannian metrics g and h satisfying
9p(pZ,pW) = § trace((pZ)" - pW),  hy(pZ,pW) = § trace(Z" - W).
Further let g, h be their induced metrics on the special linear group
SL,.(R) as a subset of GL,,(R).

(i) Which of the metrics g, h, g, h are left-invariant ?
(ii) Determine the normal space N.SL,,(R) of SL,,(R) in GL,,(R)
with respect to ¢
(iii) Determine the normal bundle NSL,,(R) of SL,,(R) in GL,,,(R)
with respect to h.

Exercise 5.6. Find a proof of Theorem [5.34] (Hint: Use Example
0.32)).

Exercise 5.7. Equip the tangent space T.SLs(R), of the special
linear group SLy(R) at the neutral element e, with the scalar product

(A, B) = $trace (A" - B).
Show that {X,Y, Z} is an orthonornal basis for T.SLy(R), where

Sl ] B R B

Exercise 5.8. Equip the tangent space T.SU(2), of the special
unitary group SU(2) at the neutral element e, with the scalar product

(A, B) = 3 Retrace (A" - B).
Show that {X,Y, Z} is an orthonornal basis for 7,SU(2), where

i B A B
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CHAPTER 6

The Levi-Civita Connection

In this chapter we introduce the Levi-Civita connection on the tan-
gent bundle of a Riemannian manifold. This is the most important ex-
ample of the general notion of a connection on a smooth vector bundle.
We deduce the explicit Koszul formula for the Levi-Civita connection
and show how this simplifies in the important cases of Riemannian Lie
groups. We also give an example of a metric connection on the nor-
mal bundle of a submanifold of a Riemannian manifold and study its
properties.

On the m-dimensional vector space R™ we have the well known
differential operator

9 : C°(TR™) x C=(TR™) — C=(TR™)

on the tangent bundle TR™. This maps a pair of vector fields X,Y on
R™ to the classical directional derivative d5Y of Y in the direction

of X given by
(0xY)(x) = %1_13(} Y(z+t- Xt(x)) — Y(:E)

The best known fundamental properties of the operator 0 are ex-
pressed by the following: If A\,u € R, f,g € C*°(R™) and XY, Z €
C>°(TR™) then

(i) Ox(f-Y) =X(f)-Y + - 0xY,

(iii) a(f-X—i—g-Y)Z:f'aXZ—i_g'aYZ'

The next result shows that the classical differential operator 0 is

compatible with both the standard differentiable structure on R™ and
its Euclidean metric.

Proposition 6.1. Let the real vector space R™ be equipped with
the standard Euclidean metric (,) and X,Y,Z € C®(TR™) be smooth
vector fields on R™. Then

(i) OxY — 0y X = [X,Y],

(v) X((Y,2)) = (0xY,2) + (Y, 0xZ).
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Our principal aim is now to generalise the differential operator 0
on the classical Euclidean space E™ = (R™, (,)) to the so called Levi-
Civita connection V on a general Riemannian manifold (M, g). In this
important process, we first introduce the general concept of a connec-
tion on a smooth vector bundle, see Definition [4.8|

Definition 6.2. Let M be a smooth manifold and (F, M, ) be a

smooth vector bundle over M. Then a connection V on (E, M, ) is
an operator

V : C®(TM) x C®(E) = C*(E),
such that forall \, p € R, f,g € C*(M), X,Y € C*(T M) and smooth
sections v, w € C*(E), we have
(1) V(A - v+ - w) = X Vo + - Vyw,
(i) Vx(f -v) = X(f) -v+ [ Vxo,
A smooth section v € C*®(FE) of the vector bundle (E, M, ) is said

to be parallel with respect to the connection V if and only if, for all
vector fields X € C*°(T'M), we have

@XU = 0.

In the special important case when the vector bundle is the tangent
bundle we have the following notion of torsion. It should be noted
that here we are not assuming that the manifold is equipped with a
Riemannian metric.

Definition 6.3. Let M be a smooth manifold and V be a connec-
tion on the tangent bundle (7'M, M, 7). Then we define its torsion

T : C®(TM) x C*(TM) = C®(TM)

by
T(X,Y)=VyY — %X — [X,Y],
where [,] is the Lie bracket on C°°(T'M). The connection V is said to

be torsion-free if its torsion 7" vanishes i.e. if for all X, Y € C>*(T'M),
we have

(X, Y] = VyY — X
For the tangent bundle of a Riemannian manifold we have the fol-
lowing natural notion.
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Definition 6.4. Let (M, g) be a Riemannian manifold. Then a con-
nection V on the tangent bundle (7'M, M, ) is said to be metric, or
compatible with the Riemannian metric g, if for all X, Y, Z € C*(TM)

X(g(Y,2)) = g(VyY, Z) + g(Y, Vy Z).
The following turns out to be very important for what follows.

Observation 6.5. Let (M, g) be a Riemannian manifold and V be
a metric and torsion-free connection on its tangent bundle (7'M, M, ).
Then it is easily seen that the following equations hold

g<VXY7 7)=X(g(Y,Z)) - g(Y, VXZ)a

g(VXYaZ) = g([X7Y]72)+g<v}/X7Z)
- g([X7Y]7Z)+Y(g(X72>>_g(vaY'Z)a

0 = —Z(g(X,Y))+9g(VX,Y)+ g(X,V,Y)
= —ZgX,Y))+9(VxZ +[2,X].Y) + 9(X,\jZ - [Y, Z]).
When adding these relations we yield the following so called Koszul
formula for the operator V
2-9(WY,2) = {X(g(Y,2))+Y(9(Z X)) - 2(9(X.Y))
+9(Z,[X,Y]) +9([Z2, X],Y) + 9([Z, Y], X)}.

If {F1,...,E,} is a local orthonormal frame for the tangent bundle,
see Example [5.32 then

i=1
It follows from the Koszul formula that the coefficients in this sum are
uniquely determined by the Lie bracket [,] and the Riemannian metric
g. This sum is also independent of the chosen local orthonormal frame.
As a direct consequence we see that there exists at most one torsion-
free and metric connection on the tangent bundle of (M, g).

This leads us to the following natural definition of the all important
Levi-Civita connection.

Definition 6.6. Let (M, g) be a Riemannian manifold then the
operator
V:C®TM)x C®(TM)— C>*(TM)
given by
9(VxY.Z) = ${X(9(Y,2))+Y(9(X,2)) - Z(9(X,Y))
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+9(Z, [X.Y]) +9([Z2, X].Y) + 9([Z, Y], X)}
is called the Levi-Civita connection on M.
Remark 6.7. It is very important to note that the Levi-Civita

connection is an intrinsic object on (M, g) i.e. only depending on the
differentiable structure of the manifold and its Riemannian metric.

Proposition 6.8. Let (M,g) be a Riemannian manifold. Then
the Levi-Civita connection V is a connection on the tangent bundle
(TM, M, ).

ProoF. It follows from Definition (3.6, Theorem [4.24] and the fact
that ¢ is a tensor field that

9V (N Yi+p-Ys), Z) = X g(VxY1, Z) + - g(VyYa, Z)
and that

o5y, 1 y,X.2) = 9(%:X. 2) + (W, X, 2)
for all A, € R and X,Y1,Y5,Z € C®°(TM). Furthermore, for all
f e C>®(M), we have
2 g(Vy /Y, 7)
= {X(f-9(Y,2)+ f-Y(9(X,2)) = Z(f - g(X.Y))
+f9([Z2,X]Y)+9([Z, f- Y], X) +9(Z,[X, f-Y])}
= {X() g, Z)+ - X(9(Y,2)) + [ - Y(9(X, Z))
Z(f)-9(X,Y) = f-Z(g(X.Y)) + f - 9([Z, X].Y)
+9(Z(f) Y+ f-2,Y]. X)+9(Z X(f)-Y + f-[X.Y])}
= 2 {X(f) gY.Z)+ f-9(VxY, 2)
(X () Y+ - WY, Z)
and
Q-Q(Vf,XY,Z)
= {f XY, 2))+Y(f 9(X,2)) = Z(f - 9(X,Y))
+9([Z, f- XL,Y)+ f-9([Z2,Y], X) + 9(Z,[f - X, Y])}
= {/- X, 2)+Y(f) 9(X,Z) + f-Y(9(X, Z))
—Z(f)-9(X.Y) = f- Z(9(X,Y))
+9(Z(f)- X, Y)+ f-9([Z,X].Y)
+ 92 Y], X)+ f-9(Z,[X,Y]) = g(Z,Y(f) - X)}
= 2-f-9(VyY,Z).
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This proves that V is a connection on the tangent bundle (7'M, M, ).
U

The next result is generally called the Fundamental Theorem of
Riemannian Geometry.

Theorem 6.9. Let (M,g) be a Riemannian manifold. Then the
Levi-Clivita connection V is the unique metric and torsion-free connec-
tion on the tangent bundle (T M, M, ).

Proor. The difference g(VyY,Z) — g(M-X, Z) equals twice the
skew-symmetric part (w.r.t the pair (X,Y)) of the right hand side of
the equation in Definition This implies that

= g([X,Y],2).
This proves that the Levi-Civita connection is torsion-free.
The sum g(VyY, Z) + g(VyZ,Y) equals twice the symmetric part
(w.r.t the pair (Y, Z)) on the right hand side of Definition [6.6] This
yields

= X(g9(Y,2)).
This shows that the Levi-Civita connection is compatible with the Rie-

mannian metric g on M. The stated result follows now immediately
from Proposition [6.8] O

From Lie theory, we have the following important notion of the
adjoint representation of a Lie algebra.

Definition 6.10. Let G be a Lie group with Lie algebra g. Then the
adjoint representation of g is the linear operator ad : g — End(g)
mapping an element Z € g onto the linear endomorphism adz : g — g
with

adz : X — [Z, X].

For the compact classical Lie groups, introduced in Chapter [2, we
have the following interesting result.

Proposition 6.11. Let G be one of the classical compact Lie groups
O(m), SO(m), U(m) or SU(m), equipped with its left-invariant Rie-
mannian metric given by

9(X,Y) = 1 Re(trace(X" - Y)).
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If Z € g is a left-invariant vector field on G then the linear endomor-
phism adz : g — g is skew-symmetric i.e. for all X,Y € g we have

g(adz(X),Y) + ¢g(X,adz(Y)) = 0.
PROOF. See Exercise O

The following result shows that the Koszul formula simplifies con-
siderably in the important case when the manifold is a Riemannian Lie

group.
Proposition 6.12. Let (G, g) be a Lie group equipped with a left-

invariant metric and X,Y,Z € g be left-invariant vector fields on G.
Then its Levi-Civita connection V satisfies

g(VXY7 Z) = %{g<Zv [X’ Y]) +g<adZ(X)vY) +g(X7 adZ(Y))}

In particular, if for all Z € g the linear endomorphism adz : g — g is
skew-symmetric with respect to the Riemannian metric g, then

VY = 1[X,Y].
PROOF. See Exercise O

The next example shows how the Levi-Civita connection can be
presented by means of local coordinates. Hopefully, this will convince
the reader that those should be avoided whenever possible.

Example 6.13. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V. Further let (U,x) be a local chart on M and
put X; = 0/0x; € C*(TU), so {X1,..., X} is a local frame for T M
on U. Then we define the Christoffel symbols Ffj : U — R of the
connection V with respect to (U, z) by

Yy X; =) Tl X

k=1

On the open subset z(U) of R™ we define the Riemannian metric § by
g(ei, €5) = gi; = 9(Xi, X;).

This turns the diffeomorphism z : U — z(U) into an isometry, so that
the local geometry of U with g and that of z(U) with g are precisely
the same. The differential dx is bijective so Proposition implies
that

da (X, X;]) = [de(X5), de(X;)] = [0, 0c,] = 0
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and hence [X;, X;] = 0. It now follows from the definition of the
Christoffel symbols and the Koszul formula that foreach l =1,2,...,m
we have

Z gr T =
k=1

> 9(X X)) - T
k=1
> TE Xy, X))
k=1
= g(VXZvaXl)
= 3 {Xi(9(X;, X1)) + X;(9(X1, Xi)) — Xalg(Xi, X))}
_ {ag]l ol 59@}

Or; Ox; Oz
This means that for each pair (7, j) we have a system of m linear equa-
tions in the m variables Ff’j where k = 1,2,...,m. Because the metric

g is positive definite we can solve this as follows: Let g = (g7 1) be
the components of the inverse g~! of g then the Christoffel symbols I’fj
satisfy

o dg g 09
D=3 95 + 50— ant

=1

We are now interested in the relation between the Levi-Civita con-
nection of a Riemannian manifold and that of its submanifolds, see
Theorem [6.20] For this we need the following natural notion of an
extension.

Definition 6.14. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N equipped with the induced metric. Further let
X € C®(TM) be a vector field on M and Y € C*°(N M) be a section of
its normal bundle. Let U be an open subset of N such that UNM # ().
Two vector fields X, Y € C*°(TU) are said to be local extensions of
XandY toUif X, = X, and Y, =Y, forallp e UNM. If U = N
then X,V are said to be global extension of X and Y, respectively.

Fact 6.15. Let (N,h) be a Riemannian manifold and (M, g) be a
submanifold equipped of N with the induced metric, X € C™(TM),
Y e C®(NM) and p € M. Then there exists an open neighbourhood
U of N containing p and X,Y € C®(TU) extending X andY on U,
respectively.

Remark 6.16. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N equipped with the induced metric. Let Z €
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C=(TN) be a vector field on N and Z = Z|y : M — TN be the
restriction of Z to M. Note that Z is not necessarily an element of
C>®(TM) i.e. a vector field on the submanifold M. For each p € M
the tangent vector Zp € T, N has a unique orthogonal decomposition

Zy=12, + 7},
into its tangential~part~2pT € T,M and its normal part ZpL c N,M.
For this we write Z = ZT + Z+.

Proposition 6.17. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N equipped with the induced metric. If Z €
C>®(TN) is a vector field on N then the sections ZT of the tangent
bundle TM and Z+ of the normal bundle NM are smooth.

PROOF. See Exercise O

The following important remark depends on a later observation.

For pedagogical reasons we have chosen to here present the argument
needed in Remark [7.3

Remark 6.18. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N equipped with the induced metric. Further let
X,Y € C®(T'M) be vector fields on M and X,Y € C*(TU) extend
X,Y on_an open neighbourhood U of p in N. Tt will be shown in
Remark 7.3 that (VyY'), only depends on the value X, = X, and the
value of Y along some curve 7 : (—¢,€) — N such that y(0) = p and
4(0) = X, = X,

Since X, € T,M we may choose the curve v such that the image
7((—¢€,€)) is contained in M. Then Y,y = Y, for t € (—e,€). This
means that (VyY), only depends on X, and the value of Y € C>(T'M)
along ~, hence independent of how the vector fields X and Y are ex-
tended.

Remark shows that the following important operators V and
B are well defined.

Definition 6.19. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then we define the
operators

V : C®(TM) x C®(TM) — C=(TM)
and
B: C®(TM) x C®(TM) — C®°(NM)
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by
VgV = (VW Y)" and B(X,Y) = (Vg Y)".
Here X,Y € C®(TN) are some local extensions of X,Y € C*(TM).

The operator B is called the second fundamental form of M in
(N h).

The next result provides us with the important relationship between
the Levi-Civita connection of a Riemannian manifold and that of its
submanifolds.

Theorem 6.20. Let (N,h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then the operator
V : C®(TM) x C®(TM) — C®(TM),
given by
VY = (VyY)',
is the Levi-Cwita connection of the submanifold (M,g). Here X,Y €
C>(TN) are some local extensions of X,Y € C>(TM).

PROOF. See Exercise [6.9 O

The important second fundamental form of a submanifold of a Rie-
mannian manifold has the following important properties.

Proposition 6.21. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then the second fun-
damental form B of M in N 1is symmetric and tensorial in both its
arguments.

PROOF. See Exercise [6.101 0

We now introduce the notion of a minimal submanifold of a Rie-
mannian manifold.

Definition 6.22. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then M is said to be
minimal in N if its second fundamental form

B:C*®(TM)®C*(TM)— C>*(NM)
is traceless i.c.
trace B = Z B(E,, E},) = 0.
k=1

Here {Ey, E,, ..., Ey,} is any local orthonormal frame for the tangent
bundle T'M.
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In the next Example 6.23], we show how the second fundamental
form of a surface in the Euclidean 3-space corresponds to the classical
shape operator.

Example 6.23. Let us now consider the classical Gaussian situa-
tion of a regular surface X2 as a submanifold of the three dimensional
Euclidean space E3.

Let U be an open subset of R? and p be a point contained in the
open set V = X NU of ¥. Further let {X,Y} be local orthonormal
frame for the tangent bundle TV of V and X, Y be some local extension
of X,Y to U. Let N = X x Y be a local Gauss map on V and N be
an extension to U. Then the second fundamental form B of ¥ in E? at
p satisfies

B(X)Y) = (0yY)*
(0xY,N)N
— (Y, 0xN)N
= —(Y,dN(X))N
= (Y, S,(X))N,

where S, : T,X — T,¥ is the classical shape operator at p. Then the
trace of B at p is given by

traceB = B(X,X)+ B(Y,Y)
({Sp(X), X) + (S
(trace S,) N

Here k; and ks are the eigenvalues of the symmetric shape operator S,
i.e. the principal curvatures at p. This shows that the surface ¥ is a
minimal submanifold of E3 if and only if the classical mean curvature
vanishes i.e.

Y).Y)N

We conclude this chapter by observing that the Levi-Civita con-
nection of a Riemannian manifold induces a metric connection on the
normal bundle of its submanifolds, in a natural way.

Proposition 6.24. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then the operator

V:C®(TM)x C®(NM) — C®(NM)
given by o
VY = (WyY)*
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is a well defined connection on the normal bundle NM. Here X and
Y are some local extensions of X € C®(TM) and Y € C*(NM),

respectively. Furthermore, the connection V is metric i.e. it satisfies
X(hY,Z)) =h(VRY,Z) + hY,V5Z),
for all X € C®(TM) and Y ,Z € C*(NM).
PROOF. See Exercise [6.11] O
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Exercises

Exercise 6.1. Let M be a smooth manifold and V be a connection
on the tangent bundle (7'M, M, ). Prove that the torsion of V

T:C®TM)x C*(TM) — C*(TM),
given by R A
T(X,)Y)= VY — VX — [(X,Y],
is a tensor field of type (1,2).
Exercise 6.2. Find a proof of Proposition [6.11]
Exercise 6.3. Find a proof of Proposition [6.12]

Exercise 6.4. Let G be the 3-dimensional subgroup Sol® of SL3(R)
given by

e 0 =
SolP = {0 e~ y||p=(x,9,2) € R’}
0 0 1
Let X,Y,Z € g be the left-invariant vector fields on G such that
0 0 0
Xe=—|p—0, Yo= | d Z.=—|,—0.
am|p 0 8y|1’ 0o an aZ‘P 0

Show that
(X,Y]=0, [Z,X]=X and [Z,Y]=-Y.

Let g be the left-invariant Riemannian metric on G such that {X,Y, 7}
is an orthonormal basis for the Lie algebra g. Let V denote the Levi-
Civita connection of the Riemannian Lie group (G, g). Determine the
following left-invariant vector fields

VWX, WY, V2, WY, %X, VWZ, VX, %Z, VY.

Exercise 6.5. Let the special orthogonal group SO(m) be equipped
with the Riemannian metric g and its Levi-Civita connection V, where

g(A, B) = 5 trace(A" - B).

Prove that g is left-invariant and that for vector fields A, B € so(m)
we have
VB = 5[A Bl
Let X,Y, Z € s0(3) be the left-invariant vector fields on SO(3) such
that

0 -1 0 00 —1 00 0
X,.=|1 0 0|,Y,=|00 0],2Z=100 -1
0 0 0 10 0 01 0



Show that {X,Y, Z} is an orthonormal basis for the Lie algebra so(3)
and determine the following left-invariant vector fields

VX, WY, Vi, Z, VY, N X, VyZ, VX, \j-Z, VY.

Exercise 6.6. Let the special unitary group SU(2) be equipped
with the left-invariant metric

9p(pA,pB) = 1 Re trace (4" - B).
Let X,Y, Z € su(2) be the left-invariant vector fields on SU(2) with

0 —1 i 0 0 i
S N Rl I R

Show that {X,Y, Z} is an orthonormal basis for the Lie algebra su(2)
and determine the following left-invariant vector fields

VWX, WY, V2, WY, %X, VWZ, VX, %Z, VY.

Exercise 6.7. Let the special linear group SLs(R) be equipped
with the left-invariant metric

9p(pA,pB) = 3 trace(A" - B).
Let XY, Z € sl3(R) be the left-invariant vector fields on SLy(R) with
0 -1 1 0 01
Rt N Kl T B )
Show that {X,Y, Z} is an orthonormal basis for the Lie algebra so(3)
and determine the following left-invariant vector fields

Vi X, WY, V,Z, V.Y, X, Vi Z, VX, \jZ, VY.
Exercise 6.8. Find a proof of Proposition [6.17]
Exercise 6.9. Find a proof of Theorem [6.20]
Exercise 6.10. Find a proof of Proposition [6.21]
Exercise 6.11. Find a proof of Proposition [6.24]
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CHAPTER 7

Geodesics

The main purpose of this chapter is the introduction of the im-
portant notion of geodesics on Riemannian manifolds. Geodesics are
solutions to a second order system, of non-linear ordinary differen-
tial equations, heavily depending on the geometry of the manifolds
involved. In this process we develop the idea of parallel vector fields
along curves in Riemannian manifolds. We show that geodesics are
solutions to two different variational problems. They are both criti-
cal points of the so called energy functional and locally the shortest
paths between their endpoints. We then study the important notion of
totally geodesic submanifolds.

Definition 7.1. Let (T'M, M, ) be the tangent bundle of a smooth
manifold M. A vector field X along a curve v : [ — M is a smooth
map X : I — T'M such that 7o X =~v. By C°(T'M) we denote the
set of all smooth vector fields along 7. For X,Y € C(T'M) and
f € C°(I) we define the addition + and the multiplication - by

() (X +Y)(t) = X(t) + Y (1),

(i) (f - X)(t) = f(t) - X(2).

This turns (C°(T'M), +, ) into a module over C*°(I) and a real vector
space over the constant functions, in particular. For a given smooth
curve v : I — M in M the smooth vector field X : [ — TM with
X it (7(t),%(t)) is called the tangent field along ~.

The next result provides us with a differential operator for vector
fields along a given curve and shows how this is closely related to the
Levi-Civita connection.

Proposition 7.2. Let (M, g) be a Riemannian manifold with Levi-
Ciita connection V and v : I — M be a C'-curve in M. Then there
exists a unique operator

D o0 o0
e CX(TM) — CF(TM),
such that for all \,p € R, f € C®(I) and X,Y € C*(T'M), we have

(i) DON- X +p-Y)/dt =X (DX /dt) + - (DY/dt),
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(i) D(f-X)/dt =df/dt - X + f-(DX/dt), and
(i1i) for eachty € I, there exists an open subinterval J of I such that
to € J and if X € C*(TM) is a vector field with X, =Y (t)
for allt € J, we have
DY

( = (VXD 10)-

Proor. We start by proving the uniqueness part of the statement,
hence we assume that such an operator exists. For a point ¢t € I,
choose a local chart (U,z) on M and an open subinterval J C I such
that tg € J, v(J) C U and for i = 1,2,...,m we put X; = 9/dz; €
C>(TU).

Then any vector field Y along the restriction of v to J can be
written in the form

Z v(t)

for some functions a; € C*°(J). The conditions (i) and (ii) imply that

(2%,
Zak - (X5) w)%—z% (e (D)

For the local chart (U, z), the composition

IO’Y(t):<71<t>7"'7/7m nyz €

parametrises a curve in R™ contained in z(U ) Hence the tangent map
dz satisfies

Aoy (3(1)) = (20 (1) = (1), (1))

Because the local coordinate = : U — x(U) is a diffeomorphism, its
linear differential dx : TU — TR™ is bijective, satisfying

0
dx(aﬂ

for i =1,2,...,m. This immediately implies that

- Z%(” - (X3) 4

and the condition (iii) shows that
DXj
(—* dt (t) - VVX ()
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m

= > ) (Vx Xi)v0

i=1
= > A0 - THOD) - (X)s-
i k=1
By substituting this relation into equation (7.1]) we yield
DY N - .
(S50 =S {0+ D st 5u(t) ThGE)} - (X), - (72)
k=1 ij=1

This shows that there exists at most one such differential operator.
It is easily seen that if we use equation (7.2) for defining an operator

D/dt then this satisfies the necessary conditions of Proposition [7.2]

That proves the existence part of the stated result. O

The calculations of the last proof have the following important con-
sequence.

Remark 7.3. Let us assume the set up of Proposition [7.2] It then
follows from the fact that the Levi-Civita connection is tensorial in its
first argument and the following equation

(VY )yt0) = > {an(to) + Y aylto) - Filta) - Th(v(to)) } - (Xk) )
k=1 ij=1
that the value (V,Y), of V,¥" at p only depends on the value Z, of Z

at p and the values of Y along some curve ~ satisfying v(0) = p and
4(0) = Z,. This allows us to use the notation V.Y for DY/dt.

The Levi-Civita connection can now be used to define the notions
of parallel vector fields and geodesics on a Riemannian manifold. We
will show that they are solutions to ordinary differential equations.

Definition 7.4. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V and v : I — M be a Cl-curve. A vector field X
along ~ is said to be parallel if

V;YX:O

A C?-curve v : I — M is said to be a geodesic if its tangent field 7 is
parallel along v i.e.

The next result shows that for a given initial value at a point we
yield a parallel vector field globally defined along any curve through
that point.
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Theorem 7.5. Let (M, g) be a Riemannian manifold and I = (a,b)
be an open interval on the real line R. Further let 7 : [a,b] — M be a
continuous curve which is C* on I, ty € I and v € T,4oyM. Then there
exists a unique parallel vector field Y along vy such that Y (ty) = v.

PROOF. Let (U, x) be a local chart on M such that v(tg) € U and
fori =1,2,...,m define X; = 9/0z; € C°(TU). Let J be an open
proper subinterval of I such that the image v(.J) is contained in U.

Then the tangent of the restriction of v to J can be written as

B Z%(t) - (Xi)

Similarly, let Y be a vector field along v of the form

m

Y(t) = a;(t)- (X)), -

J=1

Then

(%)) = z{% S () (),

= Z{dk(t) + Z a;(t) - Ji(t) - F%(W(t))}(Xk)v(t)-
k=1 ij=1
This implies that the vector field Y is parallel i.e. VWY = 0 if and

only if the following first order linear system of ordinary differential
equations is satisfied

m

an(t) + Y ay(t) - Ailt) - Th( (1) = 0,

ij=1

for all k = 1,...,m. It follows from Fact [7.6] that to each initial value
(to) (’Ul, c. ,Um) < ]Rm’ with

Yt = 3o (X))
k=1

there exists a unique solution a = (ay, ..., a,,) to the above system.
This gives us the unique parallel vector field Y

V() = ) (Xe)

k=1
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along J. Since the Christoffel symbols are bounded along the compact
set [a, b] it is clear that the parallel vector field can be extended to the
whole of I = (a,b). O

The following result is the well-known theorem of Picard-Lindelof.

Fact 7.6. Let f: U — R" be a continuous map defined on an open
subset U of R x R™ and L € R such that

|f(tay1) _f<t7y2)| <L- |y1 _y2|

forall (t,y1), (t,y2) € U. If (to, xo) € U then there exists a unique local
solution x : I — R™ to the following initial value problem

ZL’I(t) = f(t,ﬁ(t)), $(t0) = Zo-
For parallel vector fields we have the following important result.

Lemma 7.7. Let (M, g) be a Riemannian manifold, v : 1 — M be

a Ct-curve and X, Y be parallel vector fields along . Then the function
g(X,)Y): I =R, given by

9(X,Y) it = gy ( Xy, Vo),

is constant. In particular, if v is a geodesic then g(7,%) is constant
along 7.

Proor. Using the fact that the Levi-Civita connection is metric
we obtain

d

a(g(X, Y)) = Q(VVX,Y) +9(X, V”VY) —=0.

This proves that the function g(X,Y’) is constant along ~. U

The following result turns out to be a very useful tool. We will
employ this in Chapter [9}

Proposition 7.8. Let (M, g) be a Riemannian manifold, p € M
and {v1,..., v} be an orthonormal basis for the tangent space T, M.
Lety : I — M be a C'-curve such that v(0) = p and X1, ..., X,, be the
parallel vector fields along v such that X (0) = vy for k =1,2,...,m.
Then the set {X1(t), ..., X;n(t)} is an orthonormal basis for the tangent
space TypyM for allt € 1.

ProoF. This is a direct consequence of Lemma [7.7] O

Geodesics play a very important role in Riemannian geometry. For
these we have the following fundamental existence and uniqueness re-
sult.

95



Theorem 7.9. Let (M,g) be a Riemannian manifold. If p € M
and v € T,M then there exists an open interval I = (—e,€) and a
unique geodesic vy : I — M such that y(0) = p and ¥(0) = v.

PROOF. Let v : I — M be a C%-curve in M such that y(0) = p
and 4(0) = v. Further let (U, x) be a local chart on M such that p € U
and for i = 1,2,...,m put X; = 9/0x; € C°(TU). Let J be an open
subinterval of I such that the image (/) is contained in U.

Then the tangent of the restriction of v to J can be written as

’Y(t) = Z%(t) : (Xi),y(t)'

By differentiation we then obtain
W - R0 (X))
=
= Z{%(t) . (Xj)w(t) + Z%(t> : 7]’(75) ) (inXj)n,(t)}
j=1 i=1

= DU + Do w0 40 - THOW)} - (Xe) -

t,j=1

Hence the curve v is a geodesic if and only if

Ye(t) + Z Fi(t) - A(t) - Ti(v(1) = 0
ij=1
forall k =1,2,...,m. It follows from Fact that for initial values

q = z(p) and w = (dz),(v) there exists an open interval (—e,¢) and a
unique solution (71, ..., 7m,) satisfying the initial conditions

(71(0), -+, (0)) = ¢ and (41(0),...,9m(0)) = w.
O

The following result is a well-known second order consequence of
the theorem of Picard-Lindelof.

Fact 7.10. Let f : U — R"™ be a continuous map defined on an
open subset U of R x R?" and L € RT such that

|f(t7y1> - f<t7y2)| <L-: |y1 _y2|

for all (t,y1),(t,y2) € U. If (to,(x0,21)) € U and xg,z1 € R™ then
there exists a unique local solution x : I — R™ to the following initial
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value problem
2(t) = f(t,x(t),2'(t)), x(to) = w0, '(to) = z1.

Remark 7.11. The Levi-Civita connection V on a given Riemann-
ian manifold (M, g) is an inner object i.e. completely determined by
the differentiable structure on M and the Riemannian metric g, see
Remark [6.7] Hence the same applies for the condition

Vﬁﬂ'y =0
for any given curve v : I — M. This means that the image of a geodesic
under a local isometry is again a geodesic.

We can now determine the geodesics in the Euclidean spaces.

Example 7.12. Let E™ = (R™,(,)) be the standard Euclidean
space of dimension m. For the global chart idgm : R™ — R™ the
metric on E™ is given by g;; = 0;;. As a direct consequence of Example
6.13| we see that the corresponding Christoffel symbols satisfy

FZ»zO forall 7,7,k=1,...,m.

Hence a C?-curve v : [ — R™ is a geodesic if and only if ¥(¢) = 0. For
any p € R™ and any v € T,R™ = R™ define the curve

Vpw) : R = R™ by ypu)(t) =p+t-v.

Then v, (0) = D, Y(p)(0) = v and ¥, = 0. It now follows from the
uniqueness part of Theorem that the geodesics in E" are precisely
the straight lines.

For the classical situation of a surface in the three dimensional
Euclidean space we have the following well known result.

Example 7.13. Let X? be a regular surface as a submanifold of
the three dimensional Euclidean space E3. If v : I — ¥ is a C%-curve,
then Theorem [6.20] tells us that

. T T
Vi = (9:7) =79
This means that + is a geodesic if and only if the tangential part 47 of
its second derivative v vanishes.

Definition 7.14. A geodesic v : J — (M, g) on a Riemannian
manifold is said to be maximal if it can not be extended to a geodesic
defined on an interval I strictly containing J. The manifold (M, g)
is said to be complete if for each point (p,v) € TM there exists a
geodesic 7 : R — M, defined on the whole of R, such that v(0) = p
and ¥(0) = v.
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The next statement generalises the classical result of Example [7.13]

Proposition 7.15. Let (N, h) be a Riemannian manifold with Levi-
Cwita connection V and M be a submanifold of N equipped with the
induced metric g. A C?*-curve v : I — M is a geodesic in M if and
only if

(vv')T = 0.

PROOF. The result is an immediate consequence of Theorem [6.20
stating that the Levi-Civita connection V of (M, g) satisfies

= . NT
VW— (V7 ).
O

With this at hand, we can now determine the geodesics on the
standard unit spheres.

Example 7.16. Let S™ be the m-dimensional unit sphere in the
standard Euclidean space E™*! with the induced metric. At a point
p € S™ the normal space N,S™ of S™ in E™*! is simply the line
generated by p. If v : I — S™ is a C%-curve on the sphere, then

Vi = (%) =00 =7 =9 -9" =9 {F

/‘)/
This shows that v is a geodesic on the sphere S™ if and only if
¥ =G (7.3)
For a point (p, X) € T'S™ define the curve v = v, x) : R = 5™ by
R P it X =0
7 cos(| X|t) - p+sin(| X|t) - X/|X| if X #0.

Then one easily checks that v(0) = p, ¥(0) = X and that v satisfies the
geodesic equation ([7.3). This shows that the non-constant geodesics on
S™ are precisely the great circles and that the sphere is complete.

Having determined the geodesics on the standard spheres, we can
now easily find the geodesics on the real projective spaces.

Example 7.17. Let Sym(R™"!) be equipped with the metric

9(A, B) = g trace(A" - B).
Then we know from Example that the map ¢ : S™ — Sym(R™*!)
with
p:p— (2p-p'—e)

is an isometric immersion and that the image ¢(S™) is isometric to
the m-dimensional real projective space RP™. This means that the
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geodesics on RP™ are exactly the images of geodesics on S™. This
shows that the real projective space is complete.

We will now show that the geodesics are critical points of the so
called energy functional. For this we need the following two definitions.

Definition 7.18. Let (M, g) be a Riemannian manifold and ~ :
I — M be a C"-curve on M. A variation of v is a C"-map
O:(—ee) x> M

such that for all s € I, ®y(s) = ®(0,s) = 7(s). If the interval is
compact i.e. of the form I = [a,b], then the variation ® is said to be
proper if for all t € (—¢, €) we have ®;(a) = v(a) and ®4(b) = v(b).

Definition 7.19. Let (M, g) be a Riemannian manifold and ~ :
I — M be a C?*-curve on M. For every compact interval [a,b] C I we
define the energy functional E|,; by

b
Elay(7) = % / g(3(t), (t))dt.

A C?-curve v : I — M is called a critical point for the energy
functional if every proper variation ® of 7|, satisfies

d
—(Fra51(P4))]1=0 = 0.
= (Blo (®0)li=o
We will now characterise the geodesics as the critical points of the
energy functional.

Theorem 7.20. A C?%-curve v : I = [a,b] — M is a critical point
for the energy functional if and only if it is a geodesic.

PROOF. For a C%-map @ : (—e,¢) x [ — M, ® : (t,s) — D(t,s)
we define the vector fields X = d®(9/0s) and Y = d®(0/0t) along P.
The following shows that the vector fields X and Y commute.

VY - %X = [X,Y]
= [d®(0/0s),dd(d/0t)]
= d®([0/0s,0/0t])
= 0,

since [0/0s,0/0t] = 0. We now assume that ® is a proper variation of
~. Then

GEBan(@) = $5([ ax. X))
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(75 (Y, X)) = g, VyX))ds

= [g(Y,XﬂZ—/ g(Y, VyX)ds.

The variation is proper, so Y (t,a) = Y (t,b) = 0. Furthermore
X(0,8) = 0®/0s(0,s) = (s),

SO
d

G Bun@lo == [ oV(0,5), (%) (5))ds.

The last integral vanishes for every proper variation ® of v if and only
if V,-ﬂ =0. O

A geodesic v : I — (M,g) is a special case of what is called a
harmonic map ¢ : (M, g) — (N, h) between Riemannian manifolds.
Other examples are the conformal immersions ¢ : (M? g) — (N, h)
which parametrise the minimal surfaces in (N,h). The study of
harmonic maps between Riemannian manifolds was initiated by the
seminal paper: J. Eells, J. H. Sampson, Harmonic mappings of Rie-
mannian manifolds, Amer. J. Math. 86, (1964), 109-160. For a mod-
ern reference on harmonic maps see H. Urakawa, Calculus of Variations
and Harmonic Maps, Translations of Mathematical Monographs 132,
AMS (1993).

Our next goal is to prove the important result of Theorem For
this we introduce the exponential map, which is a fundamental tool in
Riemannian geometry.

Definition 7.21. Let (M™,g) be an m-dimensional Riemannian
manifold, p € M and

S7 = {v € T,M | g,(v,v) = 1}

be the unit sphere in the tangent space T,M at p. Then every non-
zero element w € T,M can be written as w = r,, - v, where 1, = |w|
and v, = w/|lw| € S~ For v € S let v, @ (—aw, ;) — M be

100



the maximal geodesic such that «,, 5, € RT U {0}, 7,(0) = p and
4»(0) = v. The unit sphere S;”_l is compact and for this reason it can
be shown that the real number
e, = inf{a,, B, |v e S}
is positive so the open ball
BZZ(O) ={veT,M|g,(v,v) < ez}

is non-empty. The exponential map exp, : B (0) — M at p is
defined by
exp, : W > { b ifw =0
P Voo (Tw) 1w # 0.

Note that for v € S~ the line segment \, : (—€p,€,) = T,M
with \, : t — t - v is mapped onto the geodesic 7, i.e. locally we have
Vv = exp,, 0A,. One can prove that the map exp, is differentiable and
it follows from its definition that the differential

d(exp,)o : T,M — T,M
is the identity map for the tangent space T, M. Then the inverse map-
ping Theorem tells us that there exists an 7, € R such that if
U, = B;"(0) and V,, = exp, (U,) then exp,, [y, : U, =V}, is a diffeomor-
phism parametrising the open subset V}, of M.

Example 7.22. Let S™ be the unit sphere in the standard Eu-
clidean E™*! and exp,, : T,5™ — S™ be the exponential map of S™ at
the north pole p = (0,1) € R™ x R. Then we clearly have exp,(0) = p.
If Y € T,5™ is a unit vector i.e. |Y| = 1, then the line through the
origin, generated by Y, is parametrised by Ay : R — T,5™ satisfying
Ay (s) = s-Y with

Ay(0) =0 and Ay(0) =Y.
Furthermore, there exists a unique geodesic vy : R — S™ such that
v (0) =p and 4y (0) =Y.
According to Example [7.16, this satisfies
Yy (s) =coss-p+sins- (Y,0).
From this we see that the exponential map exp,, : T,S™ — S™ satisfies
exp, :5-Y > (coss-p+sins- (Y,0)).

This maps the line Ay onto the geodesic 7y and is clearly injective on
the open ball
Br(0) = {X € T,5™ | X] < 7}
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of radius 7. We will see in Theorem that the geodesic
Yy 18> expy(s-Y)

is the shortest path between p and vy (r) as long as » < 7. Note that
each point on the (m — 1)-dimensional sphere

178" ={Z € T,5™||Z| = 7}

is mapped to the south pole —p = (0,—1), so the globally defined
exponential map exp, : T,S™ — S™ is not injective.

The exponential map exp, takes the origin 0 € T),5™ to the point
p € S™. This means that its tangent map d(exp,)o at 0 is defined on
the tangent space T1,S™ of T,5™ at 0 € T,,5™, which we identify with
T,S™. Since the two tangents Ay (0) and 4y (0) satisfy Ay (0) = 4y (0)
we see that the tangent map

d(exp,)o : T, S™ — T,S™

is simply the identity map of the tangent space 71,5™.

The next result shows that on a Riemannian manifold the geodesics
are locally the shortest paths between their endpoints.

Theorem 7.23. Let (M, g) be a Riemannian manifold. Then the
geodesics are locally the shortest paths between their endpoints.

PRrOOF. Let p € M, U = B"(0) in T,M and V = exp,(U) be such
that the restriction
p=exp,lv:U—=V
of the exponential map at p is a diffeomorphism. We define a metric g
on U such that for each X,Y € C*(TU) we have

9(X,Y) = g(do(X), do(Y)).
This turns ¢ : (U,g§) — (V,g) into an isometry. It then follows from
the construction of the exponential map, that the geodesics in (U, g)
through the point 0 = ¢~!(p) are exactly the lines A, : ¢ — t - v where
vel,M.

Now let ¢ be an arbitrary non-zero element of B/*(0) and A\, :
[0,1] — B™(0) be the geodesic A, : t — t - . Further let o : [0,1] = U
be any C'-curve such that o(0) = 0 and o(1) = ¢. Along the curve
o we define the vector field X with X : ¢ — o(t) and the tangent
field ¢ : t — o(t) to 0. Then the radial component d,,q of ¢ is the
orthogonal projection of ¢ onto the line generated by X i.e.

961, X(1)
GX@X@)"
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Then it is easily checked that

|é-rad(t)| = |X(t>|
- d d (a(t), X(1))
_ Q6 (1), X(t
T X(t)| = T g(X(t),X(t)) = X0l

Combining these two relations we yield

, d
raa(t)] 2 SX(0)]

This means that

Lo) = /O|d(t)|dt

1
> / |Graa (t)|dE
0
L d

> / SIX (1)t
X1~ [X(0)

= |q|
= L()‘q>'

This proves that in fact that ), is the shortest path connecting p and
q- O

We now introduce the important notion of totally geodesic subman-
ifolds of a Riemannian manifold.

Definition 7.24. Let (N, h) be a Riemannian manifold and (M, g)
be a submanifold of N with the induced metric. Then M is said to
be totally geodesic in N if its second fundamental form vanishes
identically i.e. B = 0.

For the totally geodesic submanifolds we have the following impor-
tant characterisation.

Proposition 7.25. Let (N, h) be a Riemannian manifold with its
Levi-Civita connection V and (M, g) be a submanifold of N equipped
with the induced metric. Then the following conditions are equivalent

(i) M is totally geodesic in N
(i1) a curve v : I — M is a geodesic in M if and only if is geodesic
i N.
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PROOF. The result is a direct consequence of the decomposition

formula R
Vi = (V{Y)T + (V{')’)L =V + B(¥,7)
and the polar identity for the symmetric second fundamental form

4.B(X,Y)=B(X+Y,X+Y)-B(X -Y,X-Y).
O

Corollary 7.26. Let (N,h) be a Riemannian manifold, p € N
and V' be an m-dimensional linear subspace of the tangent space T,,N

of N at p. Then there exists (locally) at most one totally geodesic
submanifold M of N such that T,M = V.

PROOF. See Exercise [7.5] O

Proposition 7.27. Let (N,h) be a Riemannian manifold and M
be a submanifold of N with the induced metric. For a point (p,v) of
the tangent bundle TM, let vy : I — N be the mazimal geodesic in
N with v(0) = p and ¥(0) = v. Then M is totally geodesic in (N, h) if
Yipw) () is contained in M for all (p,v) € TM. The converse is true if
M is complete.

PROOF. See Exercise O

Proposition 7.28. Let (N,h) be a Riemannian manifold and M
be a submanifold of N with the induced metric. If M is the fixpoint set
of an isometry ¢ : N — N then M is totally geodesic in N.

PROOF. Let p € M, v € T,M and ¢ : J — M be a curve in M
such that ¢(0) = p and ¢(0) = v. Since M is the fix point set of ¢
we know that ¢(c(t)) = ¢(t) for all ¢ € J and hence that ¢(p) = p
and d¢,(v) = v. Further let v : I — N be the maximal geodesic in
N with v(0) = p and %(0) = v. The map ¢ : N — N is an isometry
so the curve ¢ oy : I — N is also a geodesic. The uniqueness result
of Theorem [7.9] ¢(7(0)) = 7(0) and d¢(5(0)) = 4(0) then imply that
#(v) = . Hence the image of the geodesic v : I — N is contained in
M, so following Proposition the submanifold M is totally geodesic
in N. U

Corollary 7.29. Let m < n be positive integers. Then the m-
dimensional sphere

S™ = {(z,0) € R™! x R*™™||z]* = 1}
is a totally geodesic submanifold of
S" = {(z.y) € R™ X R"™™[[af* + |y|* = 1}.
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PRrRoOOF. The statement is a direct consequence of the fact that S™
is the fixpoint set of the isometry ¢ : S™ — S™ of S™ with (z,y) —

(x,—y). d

Corollary 7.30. Let m < n be positive integers. Let H™ be the n-
dimensional hyperbolic space modelled on the upper half space Rt x R~ 1
equipped with the Riemannian metric

1

—
Ty

9(X,Y) = = - (X,Y),

where v = (x1,...,x,) € H". Then the m-dimensional hyperbolic space
H™ = {(z,0) € H"|x € R™}
1s totally geodesic in H™.
PROOF. See Exercise [L.8 O

We conclude this chapter by introducing the important notion of a
Riemannian symmetric space.

Definition 7.31. A symmetric space is a connected Riemannian
manifold (M, g) such that for each point p € M there exists a global
isometry ¢, : M — M which is a geodesic symmetry fixing p. By
this we mean that ¢,(p) = p and the tangent map do, : T,M — T,M
satisfies do,(X) = —X for all X € T,M.

Example 7.32. Let p be an arbitrary point on the unit sphere S™
in the standard Euclidean E"™'. Then the reflection p, : R"** — R
about the line generated by p is given by

pp 4= 2(q,p)p — ¢
This is a linear map hence identical to its differential p, : R™™ — R,
The restriction ¢ = pylgm : S™ — S™ is an isometry that fixes p.
Its tangent map d¢, : T,5™ — T,S™ satisfies d¢,(X) = —X for all
X € T,5™. This shows that the homogeneous space S™ is symmetric.

Proposition 7.33. Every Riemannian symmetric space is com-
plete.

PROOF. See Exercise [T.10. O

The following important result is a direct consequence of the famous
Hopf-Rinow theorem.

Theorem 7.34. Let (M,g) be a complete Riemannian manifold
which is path-connected. If p,q € M then there exists a geodesic vy :
R — M such that v(0) = p and (1) = q.
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PROOF. See Exercise [T.11] O

The following shows that every Riemannian symmetric space is ho-
mogeneous, see Definition [5.20]

Theorem 7.35. Every Riemannian symmetric space is homoge-
neous.

PROOF. See Exercise [[.12 O

The Riemannian symmetric spaces were classified by Elie Cartan
in his seminal study from 1926. They constitute 20 countably infinite
families and 24 single exceptional cases and are quotents of Riemannian
Lie groups. They come in dual pairs (U/K,G/K), where U/K is
compact and G/K is non-compact.

The best known simply connected examples are the spheres S™ and
their dual hyperbolic spaces H™ of constant sectional curvature

S™=8S0(m+1)/SO(m), H™ =S0,(m,1)/SO(m).
We also have their complex counterparts i.e. the complex projective
and hyperbolic spaces
CP™ =SU(m+ 1)/S(U(m) x U(1)),
CH™ =SU(m,1)/S(U(m) x U(1)).
The standard reference to the theory of Riemannian symmetric

spaces is: Sigurdur Helgason, Differential Geometry, Lie Groups, and
Symmetric Spaces, Graduate Studies in Mathematics 34, AMS (2001).

106



Exercises

Exercise 7.1. The result of Exercise [5.3] shows that the two di-
mensional hyperbolic disc introduced in Example is isometric to
the upper half plane M = {(z,y) € R?|y € R*} equipped with the

Riemannian metric
1

9(X,Y) = E (X, Y).

Use your local library to find all geodesics in (M, g).

Exercise 7.2. Let the special orthogonal group SO(m) be equipped
with its standard left-invariant Riemannian metric

g(A, B) = 3 trace(A" - B).
Prove that a C?-curve v : I — SO(m) is a geodesic if and only if
VA=A

Exercise 7.3. Let the special orthogonal group SO(m) be equipped
with its standard left-invariant Riemannian metric

9(A, B) = 5 trace(A" - B).

Use the result of Exercise to show that every geodesic v : R —
SO(m), satisfying v(0) = p and §(0) = p - X, is of the form

7(s) = p- Exp(s X),
where p € SO(m) and X € T,SO(m).

Exercise 7.4. For the real parameter § € (0,7/2) define the 2-
dimensional torus Tj by

T7 = {(cosf - ¢, sind - e) € S*|a, B € R}.

Determine for which 6 € (0, 7/2) the torus 7} is a minimal submanifold
of the 3-dimensional sphere

S% ={(21,22) € C*[ |21 + [22* = 1}.
Exercise 7.5. Find a proof of Corollary [7.26]
Exercise 7.6. Find a proof of Proposition [7.27]

Exercise 7.7. Determine the totally geodesic submanifolds of the
m-~dimensional real projective space RP™. (Hint: Use the result of

Example |5.26)).
Exercise 7.8. Find a proof of Corollary [7.30]
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Exercise 7.9. Let the special orthogonal group SO(m) be equipped
with the left-invariant metric

g(A, B) = Ltrace(A" - B)

2

and let K be a Lie subgroup of SO(m). Prove that K is totally geodesic
in SO(m).

Exercise 7.10. Find a proof of Proposition [7.33]

Exercise 7.11. Use your local library to find a proof of Theorem

[.34
Exercise 7.12. Find a proof of Theorem [7.35]
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CHAPTER 8

The Riemann Curvature Tensor

In this chapter we introduce the Riemann curvature tensor and the
sectional curvature of a Riemannian manifold. These notions generalise
the Gaussian curvature playing a central role in Gaussian geometry i.e.
the classical differential geometry of curves and surfaces. We derive
the important Gauss equation comparing the sectional curvatures of
a submanifold and that of its ambient space. We prove that the Eu-
clidean spaces, the standard spheres and the hyperbolic spaces all have
constant sectional curvature. We then determine the Riemannian cur-
vature tensor for manifolds of constant sectional curvature and also for
an important class of Lie groups.

Definition 8.1. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V. Then for a vector field X € C*(TM) we have
the first order covariant derivative

Vy: C*(TM) — C™(TM)
of vector fields in the direction of the given X satisfying

We will now generalise this idea and introduce the important co-
variant derivatives of tensor fields of types (0,r) and (1,7). Before we
do this, in a formal way, we now provide the following motivation.

Motivation 8.2. Let (M, g) be a Riemannian manifold with its
Levi-Civita connection V. Let A : C5°(T'M) — C°(TM) be a tensor
field on M of type (1,2). If we differentiate the vector field A(Y, Z) in
the direction of X applying the following "naive” product rule

VX(A(Y, 7)) = (VXA)(Y, Z) + A(VXY7 Z)+ A(Y, VXZ)
we obtain
(VXA)(Y, Z) = VX(A(Y, Z)) — A(VXY, Z)—A(Y, VXZ).

Here VXA is called the ”covariant derivative” of the tensor field A in
the direction of X.
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The above idea turns out to be very useful and leads to the following
formal Definitions B.3 and [8.6l

Definition 8.3. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V. For a tensor field A : C°(TM) — C§°(TM) of
type (0,7) we define its covariant derivative

VA:CZ(TM) — C(TM)

by
VA: (X, X1, X)) = (VA (X, X)) =

X(AX1,. X)) = > AKX, Xy, VX, X, X).
k=1

A tensor field A of type (0,7) is said to be parallel if VA = 0.

The following result can be seen as yet another compatibility of the
Levi-Civita connection V of (M, g) with the Riemannian metric g.

Proposition 8.4. Let (M,g) be a Riemannian manifold with its
Levi-Civita connection V. Then the Riemannian metric g is a parallel
tensor field of type (0,2).

PROOF. See Exercise [8.1] O

Example 8.5. Let (M, g) be a Riemannian manifold. Then we
already know that its Levi-Civita connection V is tensorial in its first
argument i.e. if X,Y € C®(TM) and f,g € C*(M) then we have

v(f-X+g-Y)Z:f'VXZ+g'vYZ'
This means that a vector field Z € C*°(T'M) on M induces the natural
tensor field Z : C°(TM) — C*(T'M) of type (1,1) given by
Z:X o VW2,
satisfying
Z(f- X+9g-Y)=f-Z2(X)+g-Z(Y).

For a tensor field of type (1, ) we now have the following definition

of its covariant derivative, much in the spirit of the above mentioned
Motivation B.2l

Definition 8.6. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V. For a tensor field A : C°(T'M) — C°(TM) of
type (1,7) we define its covariant derivative

VA:C2,(TM) = C2(TM)
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by
VA: (X, X1, X)) = (VWA (X, .. X)) =

Vil A(X1, . X)) = Y AKX Xy, VieXg, X, -, X,
k=1
A tensor field A of type (1,r) is said to be parallel if VA = 0.

Definition 8.7. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V and X,Y € C*(T'M) be two vector fields on M.
Then the second order covariant derivative

V2X,Y: C*(TM) — C>®(TM)
is defined by
V2X,Y: 7 (VXZ)(Y),

where Z is the natural tensor field of type (1,1) induced by Z €
C*(TM), see Example [8.5]

As a direct consequence of Definitions and we see that if
X,Y,Z € C®(TM) are vector fields on M, then the second order
covariant derivative V% - satisfies

2 _ _
VX, vZ =Vy(Z2(Y)) - Z2(WY) = Vs \jZ — VVXYZ.
This leads us to the following important definition.

Definition 8.8. Let (M, g) be a Riemannian manifold with Levi-
Civita connection V. Then its Riemann curvature operator

R:C®(TM) x C(TM) x C®(TM) — C®(TM)

is defined as twice the skew-symmetric part of the second covariant
derivative V2 i.e.

The next remarkable result shows that the curvature operator is
actually a tensor field.

Theorem 8.9. Let (M,g) be a Riemannian manifold with Levi-
Civita connection V. Then the Riemann curvature operator

R:C(TM)— CT(TM)
satisfying
R(X,Y)Z = VW2 — W VxZ — V[X Y]Z
is a tensor field on M of type (1,3).
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PROOF. See Exercise O

The reader should note that the Riemann curvature tensor is an
intrinsic object since it only depends on the intrinsic Levi-Civita con-
nection. The following result shows that the curvature tensor has many
beautiful symmetries.

Proposition 8.10. Let (M, g) be a Riemannian manifold with Levi-
Cwita connection V. Then its Riemann curvature tensor R satisfies
the following symmetry conditions.

(i) RIX,)Y)Z =—-R(Y,X)Z,

(1)) R(X,Y)Z 4+ R(Z,X)Y + R(Y,Z)X =0,

(M}) g<R(X= Y)27 W) = g(R(Z7 W)Xv Y);

(v)6-R(X,)Y)Z=RX,)Y+Z)(Y+Z)-RX,Y—-2)(Y -2)

+RX+ZY)X+2Z)-RX-ZY)X —-2).
Here XY, Z,W € C*(TM) are vector fields on M.

PROOF. See Exercise [8.3 O

Part (iii) of Proposition[8.10]is the so called first Bianchi identity.
The second Bianchi identity is a similar result concerning the covariant
derivative VR of the curvature tensor. This will not be treated here.

Our next task is to obtain a better understanding of the Riemann
curvature tensor and compare it with the Gaussian curvature, so im-
portant in the Gaussian geometry of surfaces in the three dimensional
Euclidean space. For this see Example |8.20]

Definition 8.11. Let (M, g) be a Riemannian manifold and p € M.
Then a section V' at p is a 2-dimensional subspace of the tangent space
T,M. The set

Go(T,M) ={V|V is a section of T,M}
of sections is called the Grassmannian of 2-planes at p.

Remark 8.12. In Gaussian geometry the tangent space 7,2 of a

surface Y2 in the Euclidean E? is two dimensional. This means that

in this case there is only one section at p € ¥ namely the full two
dimensional tangent plane 7},%.

Before introducing the notion of the sectional curvature we need
the following useful technical lemma.

Lemma 8.13. Let (M, g) be a Riemannian manifold, p € M and
XY, Z, W € T,M be tangent vectors at p such that the two sections
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spang{ X, Y} and spang{Z, W} are identical. Then

JREYVYX)  g(REZW)W,Z)
XY —g(X, V)2 |ZPW|? —g(Z,W)*
PROOF. See Exercise [8.4] O

We now introduce the notion of sectional curvature at a point. The
result of Lemma R.13] shows that this is well defined.

Definition 8.14. Let (M, g) be a Riemannian manifold and p € M.
Then the function K, : Go(T,M) — R given by
g(R(X, Y)Y, X)
XP[YP —g(X,Y)?
is called the sectional curvature of the section V' = spang{X,Y'} at
the point p € M. In this case we usually write K (X,Y) for K(V).

K, : spanp{X,Y} —

Remark 8.15. It can be shown that, for a fixed p € M, the Grass-
mannian Go(T,M) is diffeomorphic to the compact quotient manifold
O(m)/0O(2) x O(m — 2). Hence the continuous real-valued function
K, : G3(T,M) — R both has a minimum and a maximum for all
pe M.

Definition 8.16. Let (M, g) be a Riemannian manifold and K, :
G2(T,M) — R be the sectional curvature function at an arbitrary point
p € M. Then we define the functions 6, A : M — R by

d:p— i K (V d A:p— K, (V).
Py et p(V) an P ettt oY)

The Riemannian manifold (M, g) is said to be

(i) of non-negative curvature if 6(p) > 0 for all p,
(i) of positive curvature if 6(p) > 0 for all p,

(iii) of non-positive curvature if A(p) <0 for all p,
(iv) of negative curvature if A(p) < 0 for all p,

(v) of constant curvature if § = A is constant,

(vi) lat if ) = A = 0.

The next example shows how the Riemann curvature tensor can be
presented by means of local coordinates. Hopefully this will convince
the reader that those should be avoided whenever possible.

Example 8.17. Let (M, g) be a Riemannian manifold and (U, x)
be a local chart on M. For 7,5, k,l=1,...,m put

0

Xi= 9 Ji = 9(Xi, X;) and Ry = g(R(X;, X;) Xk, X).

)
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Then
9 ar arl - T S r S
Rij = ngz< S+ > {r, T =T Fjr}),
J r=1

where the functions Ffj are the Christoffel symbols of the Levi-Civita
connection V of (M, g) with respect to (U, x), see Example [6.13]

PrOOF. Using the fact that [X;, X;] = 0, see Proposition [4.32, we
then obtain

{VX( IS Xs) — VXj(ka‘Xs)}

ors
(aszk X, +ZF ”C X, — ZFSF’” )
( i{rr s — F;Tkl“jr}) X..

r=1

NERANGE

s=1

[
Ms

s=1

U

Example 8.18. Let E™ = (R™, (,)) be the standard m-dimensional

Euclidean space. Then the set
g 0 0
{ , ce }
0z, 0T 0T,

is a global frame for the tangent bundle TTR™. In this situation we have
Gij = 045, SO Ffj = 0 by Example . This implies that R = 0 so E™
is flat.

We will now present the important Gauss equation comparing
the curvature tensor of a submanifold and that of its ambient space in
terms of the second fundamental form of the submanifold. This is a
fundamental result in Riemannian geometry.

Theorem 8.19. Let (N, h) be a Riemannian manifold with Levi-
Civita connection V. Further let (M, g) be a submanifold of N equipped
with the induced metric and Levi-Ciita connection V. Let XY, Z, W €
C>®(TN) be vector fields on N extending X,Y,Z,W € C>*(TM) on
M. Then we have

9(R(X,Y)Z,W) — MR(X,Y)Z,
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Here R and R are the Riemann curvature tensors of (M, g) and (N, h),
respectively, and B the second fundamental of M as a submanifold of
N.

PROOF. Employing the definitions of the curvature tensors R, R,
the Levi-Civita connection V and the second fundamental form B of
M as a submanifold of N we obtain the following:

J(R(X.V)Z.7)
— WV~ G — Sy g2 W)
= T ANT = (B2~ (T y )W)

= M(W(MZ — (B2))" = (BAVZ — (Y Z)) T W)
~ (Vi yiZ = (Sx 2T W)
= WVKZ — % VyZ — Vix, v)% W)
— h((V3 (B 2) 5 W) + h(GAVy Z) 5, W)
= h(R(X,Y)Z, W)
+h((W2)", (Y W)T) = h((Vy2) S, (B W)H)
= WR(X,Y)Z,W)
+h(B(Y,Z),B(X,W)) - h(B(X,Z),B(Y,W)).

We will now employ the Gauss equation to the classical situation
of a surface in the three dimensional Euclidean space.

Example 8.20. Let X2 be a regular surface in the Euclidean E3 =
(R3,(,)). Let {X,Y} be a local orthonormal frame for the tangent
bundle TY of ¥ around a point p € ¥ and N be the local Gauss map
with N = X x Y. Further let X,Y, N be local extensions of X,Y, N,
such that {X,Y, N} is a local orthonormal frame for TR3. Then the
second fundamental form B of ¥ in E? satisfies

B(X,Y) = (0xY)*
= <8XY,N> N
— (Y, GXN> N
= —(Y,dN(X))N
= <Y7 SP(X>> N,
where S, : T,X — T,X is the shape operator of ¥ at p. If we now
apply the fact that E3 is flat, then the Gauss equation tells us that the
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K(X,Y) =

= det S,.

In other words, the sectional curvature K (X,Y) is the determinant of
the shape operator S, i.e. the classical Gaussian curvature.

An interesting consequence of the Gauss equation is the following
useful result. For important applications see Exercises [8.7 and

Corollary 8.21. Let (N,h) be a Riemannian manifold and M be
a totally geodesic submanifold of N equipped with the induced metric
g. Let X,Y,Z, W € C®(TN) be vector fields extending X,Y ,Z, W €
C>®(TM). Then we have

G(R(X, V)2, W) = h(R(X,Y)Z,W).

Proor. This follows directly from the fact that the second funda-
mental for B of M in N vanishes identically. U

Corollary 8.22. Let (N,h) be a Riemannian manifold and M be
a totally geodesic submanifold of N equipped with the induced metric g.
Let X,Y € C®(TN) be orthogonal unit vector fields extending X,Y €
C>®(TM). Then at a point p € M we have

K,(X,Y) = K,(X,Y).

Here K and K are the sectional curvatures on (M,g) and (N,h), re-
spectively.

PRrROOF. The statement is a direct consequence of Corollary (8.21]
O

Example 8.23. The unit sphere 5™ in the standard Euclidean
E™*! has constant sectional curvature +1 (see Exercises and
and the real hyperbolic space H™ has constant sectional curvature —1

(see Exercise [8.8).

The next example provides an interesting geometric relationship
between the classical Gaussian curvature of a surface and the sectional
curvature operator of its general Riemannian ambient manifold.
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Example 8.24. Let (M, g) be a Riemannian manifold, p € M and
V be a section at p i.e. a 2-dimensional subspace of the tangent space
T,M. Further, let U, be an open neighbourhood of 7T},M, containing
the origin 0 € T, M, such that the exponential map exp,, : U, — M is
a local diffeomorphism onto the open image exp,(U,) in M. Then

(V) = exp,(U,NV)

is a Gaussian surface in M i.e. a 2-dimensional submanifold with the
induced metric. Further let V and V be the Levi-Civita connections
on M and X,(V), respectively, and B be the second fundamental form
of $,(V) in M.

If X € V is a tangent vector then the curve v : I — X,(V) with
v(s) = exp,(s-X) is a geodesic in M such that 7(0) = p and ¥(0) = X.
This implies that, at the point p € X, we have

0= VyX = (VyX) T+ (Ve X)h = VX + B(X, X).
In particular, B(X, X) =0 for all X € V. If {X,Y} is an orthonormal
basis for V', then the polar identity gives
4-B(X,Y)=BX+Y,X+Y)-BX-Y,X-Y)=0.

This shows that the second fundamental form B vanishes at the point
p. It then follows by the Gauss equation in Theorem that the
sectional curvature K,(V') and the Gaussian curvature of X,(V) are
equal at p.

Our next aim is to show that the curvature tensor, of a manifold of
constant sectional curvature, has a rather simple form. This we present
as Theorem [8.29] But first we need some preparations.

Lemma 8.25. Let (M, g) be a Riemannian manifold, p € M and
Y € T,M. Then the linear map Y : T,M — T,M given by

Y:X = RX,)Y)Y
is a symmetric endomorphism of the tangent space T),M .

Proor. If X,Y,Z € T,M then it follows from Proposition [8.10]
that

gY(X),Z2) = ¢
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Remark 8.26. For a Riemannian manifold (M, g) and p € M let
Y € T,M be a tangent vector at p with |Y| = 1. Further let N'(Y) be
the orthogonal complement of the line generated by Y in T),M i.e.
N(Y) = {X € T,M | g(X,Y) = 0},

The fact that Y(Y) = 0 and Lemma ensure the existence of an
orthonormal basis of eigenvectors X, ..., X,,_1 of the restriction of the
symmetric endomorphism Y to N(Y). Without loss of generality, we
can assume that the corresponding eigenvalues satisfy

A(p) <0 < Ana(p)-
If X e N(Y), |X|=1and Y(X) = A X then
Ky(X,Y) = g(R(X, Y)Y, X) = g(V/(X), X) = A
This means that the eigenvalues must satisfy the following inequalities

6(p) < Mi(p) < < Aa(p) < A(p).

In order to prove the interesting result of Theorem we introduce
the following tensor field.

Definition 8.27. For a Riemannian manifold (M, g) let the tensor
field Ry : C°(TM) — C°(T' M), of type (1,3), be defined by

R\(X,Y)Z = g(Y,2)X — g(X, Z2)Y.

We now have the following useful technical lemma. The proof is
based on standard arguments from linear algebra.

Lemma 8.28. Let (M, g) be a Riemannian manifold and X,Y, 7 €
C>®(TM) be vector fields on M. Then

(i) [R(X, Y)Y — Z2R,(X,Y)Y| < 1A — )| X[V

(ii) |[R(X,Y)Z — S8 1,(X,Y)Z] < 2(A — 8)|X]|Y] 2]

PROOF. Because of linearity we can, without loss of generality, as-
sume that | X|=|Y|=1|Z] =1 If X = Xt + XT with X+ 1 Y and
XT is a multiple of Y then R(X,Y)Z = R(X+,Y)Z and | X*| < |X]
so we can also assume that X 1 Y. Then

The first statement (i) follows from the fact that the symmetric
endomorphism of T, M with

X~ (RX,Y)Y — ¥ - X)

restricted to A/(Y) has eigenvalues in the closed interval 252, 2-9].
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It is easily checked that the operator R; satisfies the symmetry
conditions of Proposition and hence D = R — % - Ry does so as
well. This implies that

6-D(X,Y)Z = D(X,Y +2)(Y +Z)— D(X,Y — Z)(Y — Z)
+DX+Z2Y)X+2)-DX -ZY)X - 2).
The second statement (ii) then follows from (i) and
6-[DX,Y)Z| < 3(A-){X|(]Y + 2+ Y - Z")
HY|(IX + 2P + X - Z")}
(A= 2X[(Y P +121%) + 2V (IX[* +|Z*)}

O
The following result is an immediate consequence of Lemma [8.28]

Theorem 8.29. Let (M, g) be a Riemannian manifold of constant
sectional curvature k. Then its curvature tensor R satisfies

R(X.Y)Z =r-(9(Y,2)X — g(X, Z)Y).

PROOF. The result is an immediate consequence of Lemma [8.28
and the fact that k = § = A. O

The following result shows that the curvature tensor takes a rather
simple form for the important class of Lie groups treated in Proposition

0. 12

Proposition 8.30. Let (G, g) be a Lie group equipped with a left-
imvariant metric, such that for all X € g the endomorphism

adx :g—g¢g

1s skew-symmetric, with respect to g. Then, for left-invariant vector
fields XY, Z € g, the curvature tensor R satisfies

PROOF. See Exercise [8.91 O

Corollary 8.31. Let (G,g) be a Lie group equipped with a left-
imvariant metric, such that for all Z € g the endomorphism

adz :g— g

1s skew-symmetric, with respect to g. Let X,Y € g be left-invariant
vector fields such that | X| = |Y| = 1 and g(X,Y) = 0. Then the
sectional curvature K(X,Y') satisfies

K(X7Y) = %t ) HX?Y”Q > 0.
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PROOF. See Exercise B 10l O

We conclude this chapter by defining the Ricci and scalar curvatures
of a Riemannian manifold. These are obtained by taking traces over the
curvature tensor and play an important role in Riemannian geometry.

Definition 8.32. Let (M, g) be a Riemannian manifold, then we
define

(i) the Ricci operator Ric: C°(T'M) — C°(M) by
Ric(X) = f: R(X, e)e;,
(ii) the Ricci curvature ric : C5°(T'M) — C§°(T M) by
ric(X,Y) Zg (X ei)es, V),

(iii) the scalar curvature Scal e C™(M) by

Scal = irlc (ej,€;) zm: zm: g(R(ei, e;)e;, €;).
j=1 j=1 i=1

Here {e,...,en,} is any local orthonormal frame for the tangent bun-
dle.

In the case of constant sectional curvature we have the following
result.

Corollary 8.33. Let (M™,g) be a Riemannian manifold of con-
stant sectional curvature k. Then its scalar curvature satisfies the fol-
lowing

Scal=m-(m—1)-k

PROOF. Let {ey,...,e,} be any local orthonormal frame. Then
Theorem implies that

ric(ej, e;) = Zg (ej,€i)ei, ;)

= Zg 61762 g<€j76i)ei)7ej)

= H(Z gleiei)glej, ej) — Zg(€i7 ej)g(ei, €;))



To obtain the formula for the scalar curvature Scal we only need to
multiply the constant Ricci curvature ric(ej, e;) by m. O

As a reference on further notions of curvature we recommend the
interesting book, W. Kiihnel, Differential Geometry: Curves - Surfaces
- Manifolds, Student Mathematical Library 77, AMS (2015).



Exercises

Exercise 8.1. Let (M, g) be a Riemannian manifold. Prove that
the tensor field g of type (0, 2) is parallel with respect to the Levi-Civita
connection.

Exercise 8.2. Let (M, g) be a Riemannian manifold. Prove that
the Riemann curvature operator R is a tensor field of type (1, 3).

Exercise 8.3. Find a proof for Proposition [8.10}
Exercise 8.4. Find a proof for Lemma [8.13]

Exercise 8.5. Let R™ and C™ be equipped with their standard
Euclidean metric g given by

m

g(z,w) = Re szwk
k=1
and let T™ = {z € C™||z| = ... = |z;n] = 1} be the m-dimensional

torus in C™ with the induced metric. Find an isometric immersion
¢ : R™ — T™, determine all geodesics on T™ and prove that the torus
is flat.

Exercise 8.6. Let the Lie group S® = SU(2) be equipped with the
Riemannian metric

9(Z,W) = % - Re(trace(Z'W)).

(i) Find an orthonormal basis for T,.SU(2).
(ii) Prove that (SU(2), g) has constant sectional curvature +1.

Exercise 8.7. Let S™ be the unit sphere in R™*! equipped with
the standard Euclidean metric (,). Use the results of Corollaries [7.29]
and Exercise to prove that (S™,(,)) has constant sectional

curvature +1.

Exercise 8.8. Let H™ be the m-dimensional hyperbolic space mod-
elled on the upper half space Rt x R™~! equipped with the Riemannian
metric

1
1

where © = (z1,...,2,) € H™. For k = 1,...,m let the vector fields
X € C®°(TH™) be given by

(Xk)x =1 a_xk
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and define the operation * on H™ by
(Oé,l') * (57y) = (aﬁaay—i_x)

Prove that
(i) (H™, ) is a Lie group,
(ii) the vector fields Xy, ..., X,, are left-invariant,
(ili) [Xg, X;) =0 and [ Xy, Xi] = X}, for k, 0 =2,...,m,
(iv) the metric g is left-invariant,

(v) (H™,g) has constant curvature —1.
Compare with Exercises [6.4] and [7.1]

Exercise 8.9. Find a proof for Proposition [8.30}
Exercise 8.10. Find a proof for Corollary |8.31]






CHAPTER 9

Curvature and Local Geometry

This chapter is devoted to the study of the local geometry of a Rie-
mannian manifold and how this is controlled by its curvature tensor.
For this we introduce the notion of a Jacobi field which is a standard
tool in differential geometry. With this at hand we obtain a funda-
mental comparison result describing the curvature dependence of local
distances.

Definition 9.1. Let (M, g) be a Riemannian manifold. By a 1-
parameter family of geodesics we mean a C®-map

O:(—e,e)x I - M

such that the curve v, : I — M given by v, : s — (¢, s) is a geodesic for
allt € (—e, €). The variable t € (—¢, €) is called the family parameter
of ®.

The following result suggests that the Riemann curvature tensor is
closely related to the local behaviour of geodesics.

Proposition 9.2. Let (M, g) be a Riemannian manifold and & :
(—e€,€) x I — M be a 1-parameter family of geodesics. Then for each
t € (—e,€) the vector field J; : I — TM along v, given by

a(s) = S20.9),

satisfies the second order linear ordinary differential equation
V%V’tht + R(Jt, "}/t)")/t == 0
PRrROOF. Along ® we define the vector fields X (¢,s) = 0®/0s and
J(t,s) = 0®/0t. The fact that [0/0t,0/0s] = 0 implies that
[J, X] = [d®(0/0t),d®(0/Ds)] = d®([0/dt,0/Ds]) = 0.

Since @ is a family of geodesics we have Vi X = 0 and the definition
of the curvature tensor then implies that

R(J, X)X = VX = VyViX — Vi X
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Hence for each t € (—¢, €) we have
v"th"YtJt + R(Jb %)% =0.
O
The result of Proposition leads to the following natural notion.

Definition 9.3. Let (M, g) be a Riemannian manifold, v : I — M
be a geodesic and X = 4 be the tangent vector field along v. A C?
vector field J along v is called a Jacobi field if and only if

ViV + R(J, X)X =0 (9.1)
along 7. We denote the space of all Jacobi fields along v by J,(T'M).

We now give an example of a 1-parameter family of geodesics in the
Euclidean space E™+!.

Example 9.4. Let ¢,n : R — E™! be smooth curves such that
the image n(R) of n is contained in the unit sphere S™. If we define a

map ® : R x R — E™*! by
O (t,s) > c(t) + s n(t)

then for each t € R the curve v : s — ®(¢,s) is a straight line
parametrised by arc length and hence a geodesic in E™*!. By dif-

ferentiating this with respect to the family parameter ¢ we yield the
Jacobi field J € J,,(TE™!) along 7, satisfying
0P

J(s) = E(ﬁ $)|t=0 = ¢(0) + 5 - n(0).

The Jacobi equation (9.1) is linear in J. This means that the space
of Jacobi fields J,(T'M), along the geodesic 7, is a vector space. We
are now interested in determining its dimension.

Proposition 9.5. Let (M™, g) be a Riemannian manifold, p € M,
v : 1 — M be a geodesic with v(0) = p and X = 7 be the tangent vector
field along v. If v,w € T,M are two tangent vectors at p then there
ezists a unique Jacobi field J along v such that

Jp=v and (VyJ), =w.

PROOF. In the spirit of Proposition let {Xy,...,X;n} be an
orthonormal frame of parallel vector fields along ~. If J is a vector

field along v then
J = Z CLZ'XZ‘7
i=1
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where a; = g(J, X;) are C*-functions on the real interval I. The vector
fields X1, ..., X,, are parallel so

i=1 i=1

For the curvature tensor we have

R(X;, X)X =) biXy,
k=1

where b¥ = g(R(X;, X)X, X) are smooth functions on the real interval
I, heavily depending on the geometry of (M,g). This means that
R(J, X)X is given by
R(J, X)X = aibf X,
ik=1
and that J is a Jacobi field if and only if

m

k=1

i=1
This is clearly equivalent to the following second order system of linear
ordinary differential equations in a = (ay,...,a,) : [ — R™

i+ apb, =0 foralli=12 .. m.
k=1

A global solution will always exist and is uniquely determined by the
initial values a(0) and @(0). This implies that the Jacobi field J exists
globally and is uniquely determined by the initial conditions
J(0) =v and (VyJ)(0) = w.
O

As an immediate consequence of Proposition [9.5] we have the fol-
lowing interesting result.

Corollary 9.6. Let (M™, g) be a Riemannian manifold and ~ :
I — M be a geodesic in M. Then the vector space J,(TM), of Jacobi
fields along v, has the dimension 2m.

The following Lemma [9.7] shows that when proving results about
Jacobi fields along a geodesic 7 we can always assume, without loss of
generality, that that it is parametrised by arc length i.e. |¥| = 1.
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Lemma 9.7. Let (M, g) be a Riemannian manifold, v : I — M
be a geodesic and J be a Jacobi field along v. If A is a non-zero real
number and o : X — I is given by o : t — t/\, then yoo : \[ - M
is a geodesic and J o o is a Jacobi field along v o o.

PROOF. See Exercise O

The next result shows that both the tangential and the normal parts
of a Jacobi field are again Jacobi fields. Furthermore we completely
determine the tangential Jacobi fields.

Proposition 9.8. Let (M, g) be a Riemannian manifold, v : I —
M be a geodesic with || =1 and J be a Jacobi field along . Let J'
be the tangential part of J given by

J'=g(JA)Y and J-=J—-J"

be its normal part. Then J' and J* are Jacobi fields along vy and there
exist a,b € R such that J'(s) = (as + b)7(s) for all s € I.

PROOF. In this situation we have
VT4 RO A = G140 + R4

Yy
= g(VWVWJ,V)V

= —g(R(J,9)%, %)Y
- 0.

This shows that the tangential part J' of J is a Jacobi field. The
fact that J,(T'M) is a vector space implies that the normal part J* =
J — JT of J also is a Jacobi field.

By differentiating g(.J,¥) twice along v we obtain

d? : : N
72 0(4) = 9(VNL T, 5) = —g(R(J,9)7,7) =0
so g(J,%(s)) = (as + b) for some a,b € R. O

Corollary 9.9. Let (M, g) be a Riemannian manifold, v : 1 — M
be a geodesic and J be a Jacobi field along ~v. If

9(J(to),¥(to)) = 0 and 9((Vy])(to)>7(to)) =0
for some tg € I, then g(J(t),5(t)) =0 for allt € I.

PROOF. This is a direct consequence of the fact that the function
g(J,7y) satisfies the second order ordinary differential equation f = 0
and the initial conditions f(¢y) = 0 and f(¢y) = 0. O
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Our next aim is to show that if the Riemannian manifold (M, g) has
constant sectional curvature then we can completely solve the Jacobi
equation

Vi V] + R(J, X)X =0
along any given geodesic v : [ — M. For this we introduce the follow-
ing useful notation. For a real number x € R we define the functions
Cr, Sk : R — R by

cosh(y/|k|s) if kK <0,
cu(s) =141 if k=0,
cos(y/ks) if K > 0.

sinh(y/[x]s)//|&] if & <0,

Se(s) =4's if k=0,
sin(y/ks)/\/K if K > 0.

It is a well known fact that the unique solution to the initial value
problem

and

F+r-f=0, f(0)=a and f(0)=0
is the function f: R — R given by f(s) = a - c.(s) + b - s.(s).

We now give examples of Jacobi fields in the three model geometries
of dimension two, the Euclidean plane, the sphere and hyperbolic plane,
all of constant sectional curvature.

Example 9.10. Let C be the complex plane equipped with the
standard Euclidean metric of constant sectional curvature x = 0. The
rotations about the origin produce a l-parameter family of geodesics
@, : s+ s- e, Along the geodesic 7 : s — s we yield the Jacobi field

0P :
Jo(s) = a—tt(O,s) =1is

with |Jo(s)]? = s* = |s.(s)|*

Example 9.11. Let S? be the unit sphere, in the standard three
dimensional Euclidean space C x R equipped with the induced metric,
of constant sectional curvature x = +1. Rotations about the R-axis
produce a 1-parameter family of geodesics @; : s +— (sin(s) - €%, cos(s)).
Along the geodesic 7 : s +— (sin(s), cos(s)) we have the Jacobi field

0P,

Jo(s) W(O’ s) = (isin(s),0)

with |Jo(s)|? = sin®(s) = [s.(s)|*



Example 9.12. Let B#(0) be the open unit disk in the complex
plane equipped with the hyperbolic metric

L
(1—]z?)?
of constant sectional curvature x = —1. Rotations about the origin

produce a 1-parameter family of geodesics ®; : s +— tanh(s/2) - e'.
Along the geodesic vy : s +— tanh(s/2) we obtain the Jacobi field
0D,

Jo(s) = W(O’S) =i - tanh(s/2)

9g(X,)Y) = X, Y)

with
4 - tanh®(s/2)

Jo(s)]" = (1 — tanh?(s/2))

5 = Sil’lh2<8) - |5m<5)|2'

We are now ready to show that, in the case of constant sectional
curvature, we can completely solve the Jacobi equation along any geo-
desic.

Example 9.13. Let (M, g) be a Riemannian manifold of constant
sectional curvature k and 7 : I — M be a geodesic with |X| = 1, where
X = 4 is the tangent vector field along . Following Proposition [7.8
let P, Ps,..., P, 1 be parallel vector fields along v such that

9(P;, Pj) = 0y and g(F;, X) = 0.

Then any vector field J along v may be written as

J6) = 3 FOPS) + Fuls)X(6)

Since the vector fields Py, P, ..., P,_1, X are parallel along the curve
7, this means that J is a Jacobi field if and only if

" RGP+ Fale)X () = VWi

_ — —R(J, X)X
= —R(JH X)X
= —r(9(X, X)J*" = g(J+, X)X)
= —rJ*t

= —kK z_: fi(s)Pi(s).
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This is equivalent to the following system of ordinary differential equa-
tions

fm(s) =0 and fi(s)+rfi(s)=0 foralli=1,2,....,m—1. (9.2)

It is clear that for the initial Values

J(s0) = sz ) + vm X (s0),

(VXJ)(SO) Z w; P;(s0) + wm X (so)

or equivalently
filso) =v; and fi(so) =w; forall i=1,2,....m

we have a unique explicit solution to the system (9.2]) on the whole of
the interval I. It is given by

fm(s) = Uy, + swy, and fz(s> - Uicﬁ(s) + wisn(s)
foralli=1,2,...,m— 1.

The above considerations have the following consequence that turns
out to be important for the proof of Theorem [9.18|

Corollary 9.14. Let (M™,g) be a Riemannian manifold of con-
stant sectional curvature k. Let v : I — M be a geodesic with | X| =1,
where X = 7 is the tangent vector field along . Further let J : I —
TM be a Jacobi field along . If g(J, X) =0 and J(0) = 0 then

[/ (s)] = [(Vx)(0)] - [s4(s)]

ProoF. The assumption g(J,; X) = 0 and the considerations in
Example show that

= Z fi(s)P;(s
i=1

Then the condition J(0) = 0 implies that v = (vy,...,v,) = 0, hence

™ (vrea(s) + wisi(s)) Pi(s).

3

The orthonormal vector fields P, ..., P,_; are parallel along =, so we
yield

(W )0) = 3w (X (suls) P

131



= Y w5 i) o

m—1
i=1

The statement then follows from

m—1

(VD)) =) wi.

i=1

O

In the next example we give a complete description of the Jacobi
fields along a geodesic on the 2-dimensional sphere.

Example 9.15. Let S? be the unit sphere, in the three dimensional
Euclidean space C x R equipped with the induced metric, of constant
sectional curvature x = +1. Further let v : R — S? be the geodesic
given by v : s = (€**,0). Then the tangent vector field along ~ satisfies

i(s) = (ie™, 0).
It then follows from Proposition that all the Jacobi fields tangent
to v are given by
T (s) = (as +b)(ie”, 0),
where a,b € R. The unit vector field P : R — T'S? given by
s = ((€",0),(0,1))

is clearly normal along . In S? the tangent vector field 7 is parallel
along v so P must be parallel. This implies that all the Jacobi fields
orthogonal to 7 are given by

J(ﬁ’b)(s) = (0,acos s + bsin s),
where a,b € R.

In the general situation, when we do not assume constant sectional
curvature, the exponential map can be used to produce Jacobi fields as
follows.

Example 9.16. Let (M™, g) be a complete Riemannian manifold,
p € M and v,w € T,M. Then s — s(v + tw) defines a 1-parameter
family of lines in the tangent space 7,M which all pass through the
origin 0 € T, M. Remember that the exponential map

epr’Bg’;)(O) : BQZ(O) — expp(BZf;(O))
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maps lines in 7, M through the origin onto geodesics on M. Hence the
map

Dy 15 = exp,(s(v + tw))
is a 1-parameter family of geodesics through p € M, as long as s(v-+tw)
is an element of B!(0). This means that

0P
J(5) = -t 8)li=0 = d(exD, )41 (510) =0 = d(exD ) (510)

is a Jacobi field along the geodesic v : s — Pg(s) with v(0) = p and
4(0) = v. Here
d(expp)s(ertw) : Ts(ertw)TpM — Texpp(s(v+tw))M

is the linear tangent map of the exponential map exp, at s(v + tw).
Now differentiating with respect to the parameter s gives

d
(VxJ)(0) = —(d(expp)su(sw))ls=0 = d(expp)o(w) = w.
The above calculations show that
J(0) =0 and (VXJ)(O) = w. (9.3)

For the proof of our main result, stated in Theorem [9.18] we need
the following technical lemma.

Lemma 9.17. Let (M, g) be a Riemannian manifold with sectional
curvature uniformly bounded above by A and v : [0,a] — M be a
geodesic on M with | X| =1 where X = 4. Further let J : [0,a] — TM
be a Jacobi field along v such that g(J,X) =0 and |J| # 0 on (0, ).
Then

(1) d82|J| +A-|J] >0,
(ii) if f:1]0,a] — R is a C*-function such that
(a) f+A-f=0and f>0 on (0, @),

(b) 1(0) = [7)(0), and
(¢) £(0) = £]71(0),
then f(s) <'1(s)| on (0,a),

(i1i) if J(0) = 0, then |V J(0)| - sa(s) < [J(s)| for all s € (0, ).

PRrROOF. (i) Applying the Cauchy-Schwarz inequality and the facts
that | X| =1 and g(X,J) = 0 we obtain

ds2’ |
2

d
= Iz g(J, J)
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i<29(VXJ, J)>

ds 9(J, J)

- d g(vva J)

B %( || >

(9(Vx Ve ) + g(Vxed , V)T = g(Vyed , ) g (Y, J)
| J]3

9(VxVx ., J)
/P
g(R(J, X)X, J)
/1]
- K(X,J)- ]
—A-|J|.

v

Vv

(ii) Define the function h : [0,a) — R by

|J(s)] :
h(s) = 4 7O ol if s € (0, ),
lim,_.q o) = 1 ifs=0.

Then since f(0) = 4 J|(0), we can employ the fundamental theorem
of calculus as follows
1 . d

) = o O ) = 1T - o)}
- f%)/ d{d T £(6) — 1T - f (1) Y
- s | Gl 16 - 1) foa
_ f2 /f dtQ T+ A 1J(0)]}dt

This implies that h(s) >0so0 f(s) < |J(s)| for all s € (0, ).
(iii) The function f(s) = [V J(0)[ - sa(s) satisfies the differential
equation
f(s)+Af(s) =0
and the initial conditions f(0) = [J(0)] = 0, f(0) = [V J(0)] so it
follows from (ii) that [V J(0)| - sa(s) = f(s) < [J(s)| for all s €
(0, ). O
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The main purpose of this chapter is to prove Theorem [9.18| In the
above we have developed the technical tools needed.

Let (M, g) be a Riemannian manifold of sectional curvature which
is uniformly bounded above i.e. there exists a A € R such that
K,(V) < Aforall Ve Go(I,M) and all p € M. Let (Ma,ga) be
another Riemannian manifold which is complete and of constant sec-
tional curvature K = A. Let p € M, pa € Ma and identify the two
tangent spaces T, M = R™ =T, Mn.

Let U be an open neighbourhood of 0 € R™ such that the exponen-
tial maps (exp), and (exp),, are diffeomorphisms from U onto the im-
ages (exp),(U) in M and (exp),, (U) in Ma, respectively. Let (r,p,q)
be a geodesic triangle in M i.e. a triangle with sides which are the
shortest paths between their endpoints. Furthermore let ¢ : [a, b] — M
be the geodesic connecting r and ¢ in that triangle and v : [a, b] — T,,M
be the curve defined by ¢(t) = (exp),(v(t)). Put ca(t) = (exp),, (v(t))
for t € [a,b] and then it directly follows that c(a) = r and ¢(b) = .
Finally put rao = ca(a) and ga = ca(b).

Theorem 9.18. For the above situation the following inequality for
the distance functions d on M and da on Ma, respectively, is satisfied

da(qa,ra) < d(q, ).

PROOF. Define a 1-parameter family s — s - v(t) of straight lines
in T, M through 0. Then

Dy 1 s (exp)y(s-v(t)) and O2 : s (exp)y,(s-v(t))

are l-parameter families of geodesics through p € M and pan € MAa,
respectively. Hence

J, = 09, /0t and J& = 002 /0t
are Jacobi fields satisfying the initial conditions
Ji(0) = 0= J(0) and (VyJ)(0) = 0(t) = (VyJi*)(0).

Employing the results of Corollary and Lemma [9.17) and the fact
that Ma has constant sectional curvature A we now yield

ea()] = [J2 (1)
= [(VyJ)(0)] - sa(1)
= [(VxJ)(0)] - sa(1)
< [JL(1)]

= le(t)]-
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The curve c is the shortest path between r and ¢ so we have
da(ra,qa) < Lica) < L(c) = d(r, q).

O
If we now add the assumption that the sectional curvature of the
manifold (M, g) is uniformly bounded below i.e. there exists a § € R
such that 6 < K,(V) for all V € G5(T,M) and all p € M. Let (Ms, gs)
be a complete Riemannian manifold of constant sectional curvature §.
Let p € M and ps € Ms and identify T,M = R™ = T, Ms. Then a
similar construction as above gives two pairs of points ¢, € M and
qs,rs € My and shows that the corresponding distance functions satisfy

d(q,7) < ds(qs,7s).
Combining these two results we then locally obtain

dalga,ra) < d(q,7) < ds(gs, rs).
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Exercises

Exercise 9.1. Find a proof of Lemma [9.7]

Exercise 9.2. Let (M, g) be a Riemannian manifold and vy : I — M
be a geodesic such that X = 4 # 0. Further let J be a non-vanishing
Jacobi field along v with ¢(X,J) = 0. Prove that if g(.J, J) is constant
along ~ then (M, g) does not have strictly negative curvature.
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APPENDIX A

A Duality of Classical Lie Algebras

In this short appendix we discuss a special case of an interesting
general duality between the compact and the non-compact classical
Lie groups. This duality is fundamental in the theory of Riemannian
symmetric spaces.

The special case of this duality that we present here is that of the
special linear group SL,,(R) and the special unitary group SU(m) is
here expressed by equations and [A2]

Let R™*™ be the vector space of real m x m matrices. For this we
have the direct sum

R™™ = Skew(R™) & Sym(R™)
of its linear subspaces of symmetric and skew-symmetric matrices, re-
spectively,
Sym(R™) = {X e R™" | X — X' =0}.
Skew(R™) = {Y € R™"™|Y + Y' = 0},

This means that every matrix A € R™*™ has a unique decomposition
A= X+Y, where

X = %(A + A") € Sym(R™) and Y = %(A — A") € Skew(R™).

We now equip R”™*™ with its standard Euclidean scalar product given
by

(A, B) = 5 trace (A" - B).
Then it is easily seen that the two subspaces Sym(R™) and Skew(R™)
are orthogonal i.e. if X’ = X and Y = =Y then (X,Y) = 0.

The real special linear group
SL,,(R) = {z e R™™ | detz = 1}
has the Lie algebra sl,,,(R) consisting of the real traceless matrices i.e.
sl (R) = {A € R™™ | trace A = 0}.
For this we have an orthogonal decomposition
sl (R) = so(m) @ p, (A.1)
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where so(m) = Skew(R™) is the Lie algebra of the special orthogonal
subgroup SO(m) of SL,,(R) and p consists of the symmetric traceless
elements of R™*"™ j.e.

p={X eR™™|X = X" and trace X = 0}.
For the Lie algebra sly(R) we have the orthonormal basis {Y, X1, X5}

with
0 -1 01 1 0
e Py B (i R R |

Here the Lie subalgebra so(2) is generated by Y and its orthogonal
complement p by X; and X,. If we now employ the exponential map
Exp : R™*™ — R™*™ for real matrices we get

coss —sins

sins coss

s— Exp(sY) = { sinhs coshs

} s Bxpls Xp) = {coshs Smhs} ’

s +— Exp(s Xy) = leo 608:| :

These are all curves into the special linear group
SLy(R) = {x € R¥?| detx = 1}.

Two of them show that this is unbounded in R™*™ and hence non-
compact.

The vector space C"™*™ of complex m x m matrices is the complex-
ification of the real vector space R™*™ i.e. the direct sum

(Cme — Rmxm @ iRme.
For this we have the decomposition
C™™ = Herm(C™) & sHerm(C™)

into its linear subspaces of Hermitian and skew-Hermitian matrices,
respectively,

Herm(C™) = {Z e C™*™| Z — Z' = 0},
sHerm(C™) = {W € C™ ™ |W + W' = 0}.

This means that every matrix B € C"™*™ has a unique decomposition
B =7+ W, where

Z =3%(B+ B') € Herm(C™) and W = (B — B') € sHerm(C™).
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We can now extend the Euclidean scalar product on R™*™ to the stan-
dard Hermitian scalar product on C"™*™, given by

(A, B) = 3 Retrace (A'B).

Then it is easily seen that the two subspaces Herm(C™) and sHerm(C™)
are orthogonal i.e. if Z! = Z and W' = —W then (Z, W) = 0.

The complex special linear group
SL,,(C) = {z € C"™™ | det z = 1}
has Lie algebra sl,,(C) consisting of the complex traceless matrices i.e.
sl,(C) = {B € C™ ™ |trace B = 0}.

This is clearly sl,,(R) @ isl,,(R) i.e. the complexification of the Lie
algebra sl,,(R) of SL,,(R). For sl,,(C) we have an orthogonal decom-
position sl,,(C) = su(m) @ m, where

su(m) = {W € C™*™ |W'+ W =0, traceW =0}

is the Lie algebra of the special unitary subgroup SU(m) of SL,,(C)
and m consists of the traceless Hermitian elements of C™*™ j.e.

m={ZecC™"|Z"' - Z =0, trace Z = 0}.
It should be noted that the Lie algebra su(m) satisfies
su(m) = sa(m) & ip, (A.2)

where p is the orthogonal complement of so(m) in sl,,,(R) = so(m) @ p
discussed above. This shows that so(m) is the intersection

so(m) = su(m) N sl,(R)
and at the group level we have SO(m) = SU(m) N SL,,(R).

For the Lie algebra sly(C) = sly(R) @i sly(R) we have orthonormal
basis

B={Y, X1, X5,iY,i X1,i Xo}.
Note that here the Lie algebra su(2) of SU(2) satisfies
su(2) =s0(2)®ip
and is generated by Y, ¢ X1, 7 X5, where
0 -1 . 0 2 . v 0
S RPN o
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If we now employ the exponential Exp : C™*™ — C™*™ for complex
matrices we get

coss —sins
sins coss

s+ Exp(sY) = { ], s +— Exp(siXy) = [

coss 1sins
78ins coss |’

s — Exp(si Xy) = {e(;s eois} :
These are all curves into the special unitary group
SU22) = {2 € C**|z'2 = e, detz =1}
and they are bounded in C™*™ since SU(2) is compact.
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APPENDIX B

The Quaternionic Unitary Group Sp(n)

In this short appendix we introduce the compact quaternionic
unitary group Sp(n). This is the intersection of the unitary group
U(2n) and the standard complex representation p : GL,, (H) — C?"*2"
of the quaternionic general linear group GL,,(H) in C***?" given by

pz(zﬂwmq:[fw “’}

The Lie algebra sp(n) of Sp(n) satisfies

i) = {[ Gy Y| e e

For 1 < r,s < n, we shall by FE,; € R"™"™ denote the matrix given
by

Z'+Z =0, Wt—W:O}.

(Ers)aﬁ = 57“(153,8
and for r < s let X4, Y, be the symmetric and skew-symmetric ma-
trices

1 1
er: = Ers+Esr ) )/rs:_
73 ARG
respectively. Further let D, be the diagonal elements with D, = E}; for
1<t <n.
We now introduce the following notation for the elements of the
orthonormal basis By, of the Lie algebra sp(n)
a __ 1 K‘S O a __ 1 iXTS O
1 IR e |
1 0 X 1 0 X
b _ rs c _ rs
%5, 0 -5
1 Dy 0 y_ L [0 Dy Dc—i 0 Dy
V210 =Dt liDy 07T e =D 0]
Herel1 <r<s<nandl1l<t<n.

(Ers - Esr>’

Dy =
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APPENDIX C

Riemannian Submersions

In this short appendix we introduce the notion of a Riemannian
submersion between Riemannian manifolds. We then prove the famous
curvature formula of O’Neill comparing the sectional curvatures of the
two manifolds involved.

Let m,n € Z* be two positive integers such that m > n and
w: (M™, g) = (N", h) be a submersion between two Riemannian man-
ifolds. Then for each p € M the differential dm, : T,M — TN is a
surjective linear map between the tangent spaces T,M and T ;)N of
M and N, respectively.

For the tangent space T, M of M at p we have a natural orthogonal
decomposition

Here the vertical space V, at p is the kernel of dm, and the horizontal
space H, at p its orthogonal complement i.e. H, = VpL. The restriction

dﬂp|7{p : Hp — T,T(p)N

of dm, to the horizontal space H,, is clearly a vector space isomorphism.
This means that the tangent bundle T'"M of M splits into two distri-
butions

TM =YV ®H,
the vertical distribution V and the horizontal distribution A over
M. As customary we shall by V and H also denote the projections

onto these two distributions, respectively. This means that a vector
field X € C>°(T'M) splits

X=VX+HX
into the sections VX € C(V) and HX € C>(H).

Definition C.1. Let 7 : (M, g) — (N, h) be a surjective submer-
sion between Riemannian manifolds. Then a horizontal vector field
X € C*(T'M) is said to be basic or a horizontal lift of X € C*°(T'N)
if X and X are m-related i.e. dr(X) = X.
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Definition C.2. Let 7 : (M, g) — (N, h) be a surjective submer-
sion between Riemannian manifolds. A C'-curve ¢ : I — M in M is
said to be horizontal if its tangent vector ¢(t) € Hew for all t € 1.
Such a curve is said to be a horizontal lift of a curve v : I — N in N
ify=moc.

Proposition C.3. Let 7 : (M,g) — (N,h) be a surjective sub-
mersion between Riemannian manifolds and X € C*(T'N) be a vector
field on N. Then there exist a unique horizontal lift X € C>(TM) of
X € C*(TN).

PROOF. The statement is a direct consequence of the fact that at
each point p € M the restriction

d7rp|7-[p : Hp — Tﬂ(p)N
of dm, to the horizontal space H, is a vector space isomorphism.  [J

Definition C.4. A submersion 7 : (M, g) — (N, h) between Rie-
mannian manifolds is said to be horizontally conformal if the exists
a real-valued function A : M — R such that for all p € M and horizon-
tal vectors X,,,Y, € H, at p, we have

hﬂ(p)<dﬂ'p(Xp)v dﬂ'p(y;)) = 22 gp(Xpa YD

The positive real-valued function e is called the dilation of 7. A
horizontally conformal submersion with A = 0 i.e. e* = 1 is said to be
Riemannian.

Example C.5. Let E™™! = (R™*! ¢) be the standard (m + 1)-
dimensional Euclidean space and (5™, h) be the unit sphere in E™*!
with the induced metric. Then the radial projection

7 R™N\ {0} = ™ with 7:2 — z/||
is a horizontally conformal submersion with dilation e*® = 1/|z|.
At a point p € R™"!\ {0} the tangent space T,M splits into the
vertical space V, = {\ - p| A € R} and the horizontal space

Hy = {v e R™ | g,(v,p) = 0},

~

Lemma C.6. Let 7 : (M,g9,V) — (N,h,V) be a surjective Rie-
mannian submersion, X,Y € C*(TN) be two vector fields on N and
X,Y € C®°(TM) be their horizontal lifts to M. Then

(i) HIX,V] = [X,Y],

(i) HVgY = Vi Y.
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PROOF. The statement (i) follows from the facts that dr(X) = X,
dn(Y) =Y and hence dr([X,Y]) = [X,Y], by Proposition

For (ii) let Z € C*(T'N) be an arbitrary vector field on the manifold
N and Z € C>(TM) be its horizontal lift to M. Then with (i) and
the Koszul formulae for the connections V and V we yield

g(@XY, Z)
= H{X (Y, 2) +Y(9(2, X)) - Z(9(X,Y))
Fo(Z, [, 7)) + (12, X1,7) + 9((2,¥], X)}
= HX(Y,Z2)or+Y(h(Z,X))or — Z(h(X,Y))om
FR(Z,[X,Y]) o + h(Z, X], V) o + A([Z,Y], X) o}
= WMVyY,Z)or.

This shows that dﬂ(@XY) = VyV which implies the statement. O

Proposition C.7. Let 7 : (M,g9) — (N,h) be a surjective Rie-
mannian submersion and v : I — N be a geodesic in N. Then any
horizontal lift ¢ : [ — M of v is a geodesic.

PRrOOF. It follows from Lemmas [C.9 and [C.6] that

O

Example C.8. Let ¢ € T,5™ be a unit tangent vector at a point
p on the unit sphere. Then the curve v : R — S™ with

+(s) = cos(s) - p + sin(s) - g
is a geodesic in S™. For any positive r € R the curve ¢, : R —
R™ 1\ {0} with ¢.(s) = 7 - 7(s) is a horizontal lift of v to R™*!\ {0}
via the stereographic projection 7 in Example [C.5] This is clearly
not a geodesic. The reason for this is that the horizotally conformal
submersion 7 is not Riemannian.

Lemma C.9. Let 7 : (M,g,V) — (N,h,V) be a surjective Rie-
mannian submersion, X,Y € C*(TN) be two orthonormal vector
fields on N and X,Y € C®°(T' M) be their horizontal lifts to M. Then

(i) VY = -V X,
(i) VWX =0,
(ii1) VVgY = 3VIX,Y].
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PROOF. Let V € C°(T'M) be a vertical vector field on M. Then
V' is w-related to the zero vector field on N. This implies that

H[X, V] =[X,0] = 0.

The vector fields X and Y are basic so the function g(X ) Y) is constant
along each fibre of 7. Hence

0 = V(g(X,Y))
= g(VRV.Y) +g(X, V)

= g(V,VgY) +g(%X, V).

This proves (i) and (ii) as an immediate consequence. For (iii) we have
VX, Y] = VWY — V%X =2VVyY .

U

The following result is the famous curvature formula of O’Neill from
his paper: B. O'Neill, The fundamental equations of a submersion,
Michigan Math. J. (1966), 459-469.

Theorem C.10. Let 7 : (M, g) — (N, h) be a surjective Riemann-
ian submersion, X, Y € C*(TN) be two orthonormal vector fields on

N and X,V € C>(TM) be their horizontal lifts on M. Then the
sectional curvatures Ky and Ky on M and N, respetively, satisfy

Kn(X,Y) = Kn(X,Y) + 3 [V[X, Y] (C.1)

PROOF. Since the pairs X,Y € C®(TN) and X,Y € C®(TM)
are both orthonormal we see that

= g(Ry(X, Y)Y, X)
= gHVEH+ V)%, X) — g(HVGA(H + V) VgV, X)
AU CTERVIP S G ARy
— g(vﬁyff, WXX) + g(WXY, Wyf()
= Ky(X,Y)om— g(V@XY,V@XY) + g(V[X,Y]aWX)
— Ky(X,Y)om—LV[X, V]2 -1 VX V]2
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O

The curvature formula (C.1}) of Theorem was generalised to
the situation of a horizontally conformal submersion in the following

S. Gudmundsson, The Geometry of Harmonic Morphisms, Doctoral
dissertation, University of Leeds (1992).

www.matematik.lu.se/matematiklu/personal/sigma/Doctoral-thesis.pdf
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APPENDIX D

Conformal and Minimal Foliations

In this short appendix we introduce the notions of conformal and
minimal foliations on a Riemannian manifold. We then give examples
of such foliations on some of the classical Lie groups studied earlier.

Let (M,g) be a Riemannian manifold, V be a distribution on M
and H = V' be its orthogonal complementary distribution. As cus-
tomary we will also denote by V, H the orthogonal projections onto the
corresponding subbundles of T'M.

For our analysis we now introduce two useful tools, the second
fundamental forms of the distributions V and H.

Definition D.1. Let (M, g) be a Riemannian manifold, V be a
distribution on M and H = V* be its orthogonal complementary dis-
tribution. Then the second fundamental form BY of V is defined
by

v _
BY(V,W) = 5 - H(qW +Vy/V),
where V, W € C*°(V). The corresponding second fundamental form
B™ of H is given by
BMX,Y) =5 - V(VyY +%.X),
with X, Y € C*(H).

Proposition D.2. Let (M, g) be a Riemannian manifold, V be a

distribution on M and H = V* be its orthogonal complementary distri-

bution. Then the second fundamental forms BY and B™ are tensorial
in both their arguments.

PROOF. See Exercise [D.1l O

For the important case when the vertical distribution V is integrable
we have the following.

Definition D.3. Let (M, g) be a Riemannian manifold, V be an
integrable distribution on M and H = V! be its orthogonal comple-
mentary distribution. The foliation F tangent to V is said to be con-
formal if there exists a vector field V' € V such that B* = ¢ ® V and
F is said to be Riemannian if V' = 0. Furthermore,
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(i) F is said to be minimal if trace BY = 0,
(i) F is said to be totally geodesic if BY = 0.

Proposition D.4. Let (M, g) be a Riemannian manifold, V be an
integrable distribution on M and H = V* its orthogonal complementary
distribution. Let F be the foliation tangent to V. Then

(i) the foliation F is minimal if and only if its leaves are minimal
submanifolds of (M, g),

(i1) the foliation F is totally geodesic if and only if its leaves are
totally geodesic submanifolds of (M, g),

PROOF. See Exercise [D.2 O

Proposition D.5. Let (M, g) be a Riemannian manifold, V be an
integrable distribution on M and H be its orthogonal complementary
distribution. Then the foliation F tangent to V is conformal if and

only if
B*(X,X)-B*(Y,Y)=0 and B*(X,Y)=0,

for any orthonormal pair X,Y of horizontal vectors. If F is conformal
then it is Riemannian if and only if

B*(X,X)+ B*(Y,Y) =0.
PROOF. See Exercise [D.3] 0

Example D.6. Let the special unitary group SU(2) be equipped
with the left-invariant metric

9p(pA,pB) = 1 Re trace (A" - B).
Let V, X, Y € su(2) be the left-invariant vector fields on SU(2) with

0 —1 1 0 0 1
I e e ]

Let V be the integrable distribution generated by V' € su(2) and #H be
its orthogonal complementary distribution generated by X,Y € su(2).
Then

BY(V,V) =HWV =4[V, V] =0,
so the foliation F tangent to V is totally geodesic. The following cal-
culations show that F is also Riemannian

BM(X, X) = VWX = [X, X] =0,
BH(YY) = Vvyyzgyy ] =0,
BHYX,Y) = i V(VyY + X)) = 1([X, Y]+ [V, X]) = 0.
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Exercises

Exercise D.1. Find a proof for Proposition
Exercise D.2. Find a proof for Proposition
Exercise D.3. Find a proof for Proposition

Exercise D.4. Let the special linear group SLy(R) be equipped
with the left-invariant metric

9p(PA,pB) = 3 trace(A" - B).
Let V, X, Y € sly(R) be the left-invariant vector fields on SLy(R) with

0 —1 1 0 0 1
e o] el =]
Determine whether the foliation F generated by V € sly(R) is totally
geodesic, conformal or Riemannian.






APPENDIX E

Hermitian Manifolds

This short appendix is devoted to the interplay between almost
complex structures and Riemannian metrics on differentiable mani-
folds. Amongst other things we define the important Hermitian and
Kahler manifolds.

Definition E.1. An even dimensional topological manifold M?" is
said to be complex if there exists a holomorphic atlas

A= {<Ua7¢a)‘ S I}

of charts ¢, : U, — C" on M such that the corresponding transition
maps
QSB © ¢;1|¢Q(UQHUB) : QSOC(UOC m Uﬁ) — Cn
are holomorphic for all o, 5 € I. The positive integer n is called the
complex dimension of M.
Definition E.2. Let M be a differentiable manifold. A tensor field
J:CYP(TM) — C(TM)

on M is called an almost complex structure if for all p € M the
linear map .J, : T,M — T,M satisfies J2 = —idg,p. The pair (M, J)
is called an almost complex manifold.

The following example shows that a holomorphic structure Aona
differentiable manifold M induces an almost complex structure .JJ on
M.

Example E.3. Let (M, A) be a complex manifold an z : U — C”
be local complex coordinates on M with

z2=(z1,...,2n) = (x1 +iy1, ..., Ty + 1Yp).

At a point p of U define the automorphism J, : T,M — T,M of the
tangent space T,M at p, by

0 0 0 0
Jp(a—xkb) = 8_yk|p and Jp(é)_yk|p) = —a—xk\p-
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Then it is easily seen that the definition of J, is independent of the
choice of the complex coordinate z : U — C™ and that J : C°(TM) —
C°(T'M) is an almost complex structure on M.

Definition E.4. Let (M, J) be a almost complex manifold. Then
the structure J is said to be integrable if there exists a holomorphic
structure A on M inducing J. In that case J is called a complex
structure

Theorem E.5. Let (M,J) be a almost complex manifold. The
structure J is integrable if and only if the corresponding Nijenhuis ten-
sor Ny vanishes i.e. for all E,F € C*(T'M) we have

Ny(E,F) = E,F|+ J[JE,F)+ J[E,JF| - [JE, JF] = 0.

Definition E.6. An almost Hermitian manifold (M?", g, J) is
a Riemannian manifold equipped with an almost complex structure J
such that J, : T,M — T,M is an isometry for all p € M i.e.
g(J X, JY) = g(X,Y),

for all vector fields X,Y € C>°(TM) on M. A Hermitian manifold
is an almost Hermitian manifold with an integrable structure J.

Definition E.7. Let (M, g, J) be a Hermitian manifold. The struc-
ture J is said to be
(i) Kahler if it is parallel i.e. V.J =0,

(ii) nearly Kahler if V.J is skew-symmetric ie. if (VyJ)X =0
for all X € C*(T'M),

(iii) semi-Kahler if it is divergence free i.e.

div(J) = (Vek‘])(ek) + (VjekJ)(Jek) =0.
k=1

Here {ej, Jey,...,em, Jen} is a local orthonormal frame for
TM.

Definition E.8. A differentiable map ¢ : (M, g, Jy) — (N, h, Jy)
between two almost Hermitian manifolds is said to be holomorphic
if and only if for all X € C*°(T'M) we have

dop(JuX) = Jn(dp(X)).
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